26 research outputs found

    Intrinsic toroidal rotation in the scrape-off layer of tokamaks

    Get PDF
    The origin and nature of intrinsic toroidal plasma rotation in the scrape-off-layer (SOL) of tokamaks is investigated both analytically and through numerical simulations. It is shown that the equilibrium poloidal E x B flow, the sheath physics, and the presence of poloidal asymmetries in the pressure profile act as sources of momentum, while turbulence provides the mechanism for the radial momentum transport. An equation for the radial and poloidal dependence of the equilibrium parallel ion flow is derived, and a simple analytical solution is presented. This solution reproduces and explains the main experimental trends for the Mach number found in the SOL of tokamaks. Global, three-dimensional fluid simulations of SOL turbulence in different limiter configurations confirm the validity of the analytical theory

    Numerical approach to the parallel gradient operator in tokamak scrape-off layer turbulence simulations and application to the GBS code

    Get PDF
    This paper presents two discretisation schemes for the parallel gradient operator used in scrape-off layer plasma turbulence simulations. First, a simple model describing the propagation of electrostatic shear-Alfven waves, and retaining the key elements of the parallel dynamics, is used to test the accuracy of the different schemes against analytical predictions. The most promising scheme is then tested in simulations of limited scrape-off layer turbulence with the flux-driven 3D fluid code GBS (Ricci et al., 2012): the new approach is successfully benchmarked against the original parallel gradient discretisation implemented in GBS. Finally, GBS simulations using a radially varying safety profile, which were inapplicable with the original scheme are carried out for the first time: the well-known stabilisation of resistive ballooning modes at negative magnetic shear is recovered. The main conclusion of this paper is that a simple approach to the parallel gradient, namely centred finite differences in the poloidal and toroidal direction, is able to simulate scrape-off layer turbulence provided that a higher resolution and higher convergence order are used

    Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation

    Get PDF
    Based on the drift-reduced Braginskii equations, the Global Braginskii Solver, GBS, is able to model the scrape-off layer (SOL) plasma turbulence in terms of the interplay between the plasma outflow from the tokamak core, the turbulent transport, and the losses at the vessel. Model equations, the GBS numerical algorithm, and GBS simulation results are described. GBS has been first developed to model turbulence in basic plasma physics devices, such as linear and simple magnetized toroidal devices, which contain some of the main elements of SOL turbulence in a simplified setting. In this paper we summarize the findings obtained from the simulation carried out in these configurations and we report the first simulations of SOL turbulence. We also discuss the validation project that has been carried out together with the GBS development

    The GBS code for tokamak scrape-off layer simulations

    Get PDF
    We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarization drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model. (C) 2016 Published by Elsevier Inc

    Theory-based scaling of the SOL width in circular limited tokamak plasmas

    Get PDF
    A theory-based scaling for the characteristic length of a circular, limited tokamak scrape-off layer (SOL) is obtained by considering the balance between parallel losses and non-linearly saturated resistive ballooning mode turbulence driving anomalous perpendicular transport. The SOL size increases with plasma size, resistivity, and safety factor q. The scaling is verified against flux-driven non-linear turbulence simulations, which reveal good agreement within a wide range of dimensionless parameters, including parameters closely matching the TCV tokamak. An initial comparison of the theory against experimental data from several tokamaks also yields good agreement

    Building with straw in post-emergency conditions: The case of Haiti

    No full text
    Depending on the context, straw bale constructions can be appropriate for the improvement of the housing conditions in poor Countries or in post-emergency conditions. In the paper, starting from the case of Haiti, the problem is faced with a systemic approach. First, the situation is analysed; then, different construction techniques are discussed; a design of a dedicated press is presented; a construction realised is described; finally the ongoing projects are depicted
    corecore