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Abstract
Based on the drift-reduced Braginskii equations, the Global Braginskii Solver, GBS, is able to
model the scrape-off layer (SOL) plasma turbulence in terms of the interplay between the
plasma outflow from the tokamak core, the turbulent transport, and the losses at the vessel.
Model equations, the GBS numerical algorithm, and GBS simulation results are described.
GBS has been first developed to model turbulence in basic plasma physics devices, such as
linear and simple magnetized toroidal devices, which contain some of the main elements of
SOL turbulence in a simplified setting. In this paper we summarize the findings obtained from
the simulation carried out in these configurations and we report the first simulations of SOL
turbulence. We also discuss the validation project that has been carried out together with the
GBS development.

(Some figures may appear in colour only in the online journal)

1. Introduction

Turbulence in the scrape-off layer (SOL) of magnetic
confinement devices is an outstanding open issue in magnetic
fusion [1]. In this region, plasma interacts with the solid wall
of the device, determining the boundary conditions for the core
plasma, and controlling the plasma refueling, heat losses, and
impurity dynamics, largely governing the fusion power output
of the entire device. Persisting uncertainties related to SOL
transport continue to undermine our ability to reliably predict
the performance of future fusion reactors such as ITER [2].

In the SOL region, a wide range of spatiotemporal scales
is involved and a number of approximations that are typically
used in the study of the core plasma (e.g. small-amplitude
fluctuations and the separation of turbulent and equilibrium
scale lengths) are not valid. The analysis is complicated
by a magnetic geometry that is particularly complex, due
to the presence of open field lines and an x-point geometry.
The origin of a high-confinement regime, where turbulence is
suppressed and the formation of a plasma pedestal is observed,
is still under debate: it is commonly believed that turbulent

nonlinear phenomena, partially occurring in the SOL, play
a fundamental role in suppressing the plasma transport. A
full nonlinear treatment of the plasma dynamics is therefore
necessary [3, 4].

At the edge of a tokamak, the low plasma temperature
makes the collision rate large, trapped particle effects weak,
and the attainment of a local thermodynamic equilibrium
quick. A few moments of the particle distribution functions
(i.e. the density, momentum and temperature) can be used to
model the dynamics of turbulence in this region. The fluid-
like equations that describe collisional plasma turbulence in
the edge were summarized by Braginskii in 1965 [5]. Later,
a number of reduced models more suited for computational
treatment were deduced [6–10], in some cases taking into
account finite Larmor radius (FLR) effects and introducing
kinetic effects neglected in the original Braginskii equations.
A number of codes have then been developed based on the
reduced models (see, e.g. [11–15]).

In past years, focusing mostly on the closed flux surface
region, the study of edge turbulence has been addressed mainly
in three-dimensional flux-tube geometry, which considers
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a volume that follows the magnetic field lines and has
a limited extension in the directions perpendicular to it
(see, e.g. [16, 17]). The turbulence drive (i.e. the density
and temperature gradients) is typically fixed and imposed
a priori as a background plasma profile, according to
experimental measurements, and the dynamics of small-
amplitude turbulence is followed. Within this approach,
the regimes of edge turbulence have been identified as a
competition between drift waves, resistive ballooning, and
ideal MHD modes [18, 19].

On the other hand, the formation of a self-consistent
equilibrium in the SOL region—as a balance between the
plasma source from the tokamak core, turbulent transport, and
field-line end losses at the limiter or divertor plates—has been
studied within a two-dimensional approximation [20–22]. It
has been found that the dynamics in this region is primarily
characterized by the interchange mode and by the sheath-
driven mode. The turbulence has an amplitude comparable
to the background plasma and can be bursty, with intermittent
cross-field transport events, the so-called plasma blobs. The
SOL dynamics has been coupled to the closed flux surface
region modeled with a Hasegawa–Wakatani two-dimensional
model [23, 24].

In general, little work has been performed on global
three-dimensional simulations that evolve plasma profiles and
turbulence self consistently. The obtained results suggest
that an increase of the plasma source strength can lead to a
higher plasma confinement, associated with the stabilization
of the resistive X-point mode in divertor geometry [25, 26].
Simulations also show that ELMs are possibly associated with
the nonlinear evolution of peeling ballooning modes [27–29].

In the last few years, the Global Braginskii Solver
code, GBS, has been developed with the goal of simulating
plasma SOL turbulence by evolving the full profiles of the
various quantities with no separation between ‘perturbations’
and ‘equilibrium’. These simulations can explore the self-
consistent evolution and structure of the plasma profiles in
the presence of (i) plasma density and heat input from the
core of the fusion machine, (ii) cross-field transport produced
by plasma instabilities (interchange instability or drift waves,
for example), and (iii) parallel losses at the sheaths where the
magnetic field lines terminate on the walls.

In order to progressively approach the complexity of
tokamak edge simulations, the GBS code was initially
developed and used to simulate turbulent dynamics in basic
plasma physics devices of increasing complexity [30–39].
Containing some of the main elements of SOL plasma
dynamics, some of these devices offer a simple and well-
diagnosed testbed to study the basic physics of plasma edge
turbulence and the associated transport of heat and particles in
a simplified setting. In particular, the initial GBS simulations
were focused on linear devices, such as LAPD [40], and on
the simple magnetized plasma configuration (SMT), such as
the TORPEX device [41, 42], in which a vertical magnetic
field, superimposed on a toroidal field, creates helicoidal field
lines with both ends terminating on the torus vessel. The first
version of the code was able to follow two-dimensional plasma
dynamics in the plane perpendicular to the magnetic field [30–
32, 34, 37, 39], and was developed from ESEL [13, 14], a

code that implements the algorithm described in [15]. The
two-dimensional code was used for the simulation of ideal-
interchange SMT turbulence, based on the fact that in this
regime k‖ = 0. GBS was then extended to the third dimension,
in order to describe the dynamics in the direction parallel to
the magnetic field, first to perform flux-tube simulations [33],
reaching then the capability of performing global simulation
of SMT and linear devices [35–38]. As described in this paper,
GBS now allows simulations of the tokamak SOL.

Within the GBS development, a validation project of
the GBS data has been carried out [32, 37]. Validation of
edge turbulence codes is challenging because of the difficult
diagnostic access to tokamak plasmas and the complexity of
the interpretation of the experimental measurements. Previous
comparisons between experimental and simulation data from
Alcator C-Mod, TCV, JET and NSTX [43–47] show partial
agreement. Being applied to a well-diagnosed basic plasma
physics experiment such as TORPEX, we have been able to
compare the GBS results to experimental data in great detail.
We have also established a rigorous framework to compare
quantitatively simulations and experiments.

The goal of this paper is to present a detailed derivation of
the model considered by GBS, the description of the numerical
algorithm used, and of its implementation. We then summarize
the results of GBS simulations of linear devices and SMT and
we present the first results of SOL simulations. We also discuss
the main results of the validation project that has been carried
out within the GBS development.

We finally remark that more refined kinetic codes are
being developed to approach the simulation of edge turbulent
phenomena [48, 49]. Even if GBS does not take into account
the kinetic details of edge physics, it contains the main
physics elements that presumably underlie the most important
phenomena that occur in this region. It therefore provides an
agile tool to explore the operating phase space of fusion devices
and, because of the relative simplicity of the fluid model
with respect to the kinetic one, it facilitates the theoretical
understanding of simulation results.

This paper is structured as follows. After the introduction,
in section 2 we report the model that is considered by GBS to
simulate turbulence in SOL-relevant conditions. The numerics
used in GBS is described in section 3. Section 4 is focused
on the simulation results focusing on linear devices, the SMT
configuration, and the tokamak SOL. We describe the code
validation methodology and an example of GBS validation in
section 5. The conclusions and the outlook follow.

2. The plasma turbulence model

At the plasma edge, where collisionality plays a dominant
role and kinetic effects such as particle trapping and wave–
particle resonance are less important, fluid modeling is still
an appropriate choice in order to perform global turbulence
simulations at a computational cost that allows a wide
parameter scan. Within the hypotheses that (i) the plasma
distribution function is close to a local Maxwellian, (ii) the
macroscopic time variations are slower than the collisional
time, (iii) the scale lengths along the magnetic field are longer
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than the mean free path, and (iv) the perpendicular scale lengths
are longer than the ion gyroradius, the motion of the plasma
can be described by the Braginskii momentum equation [5],
which for the species α = {i, e}, state that

mαn

(
∂

∂t
+ vα · ∇

)
vα = −∇pα

+ qαn

(
E +

1

c
v⊥α × B

)
− ∇ · πα + Rα (1)

where we have assumed a quasi-neutral plasma with singly
charged ions, such that n = ni = ne and qi = −qe = e.
The stress tensor is divided into a FLR part and a viscous part,
πα = πα

FLR + πα
vis, such that

∇ · πα
FLR = −mαnvdα · ∇vα + pα

(
∇ × b

ωcα

)
· ∇vα

+ ∇⊥

[
pα

2ωcα

∇ · (b × vα)

]
+ b × ∇

(
pα

2ωcα

∇⊥ · vα

)
(2)

and

∇ · πα
vis = Gακ − 1

3
∇Gα + [(b · ∇)Gα]b + Gα(∇ · b) (3)

having defined the diamagnetic drift-velocity, vdα = cb ×
∇pα/(qαnB), the field-line curvature κ = b · ∇b, the stress
function Gα = −3η0α[∇‖V‖αb−κ ·v −∇ ·Vα/3], b = B/B,
and the viscosities η0α = ξαpατα , with τα the collisional
time for species α and ξα a coefficient that depends on the
species (ξi = 0.96, ξe = 0.73). The momentum transfer
vector, Rα , can be neglected for ions, while it has to be kept
for electrons and is equal to Re = nb[ej‖/σ‖ − 0.71∇‖Te],
with σ‖ = 1.96ne2τe/me being the parallel conductivity and
j‖ = en(V‖i − V‖e). With respect to the standard Braginskii
equations, the friction in the direction perpendicular to the
magnetic field is neglected.

We adopt the drift ordering, which is based on assuming
that d/dt � ωci and that turbulence is essentially aligned
with the field-line, |∇‖| � |∇⊥| (see, e.g. [50] for a detailed
discussion of the drift ordering). Within the drift ordering,
it is useful to split the analysis of the dynamics into the
direction parallel and perpendicular to the magnetic field, by
decomposing Vα = V‖αb + v⊥α . By assuming that the viscous
terms are small, the drift ordering indicates that the leading
order term for v⊥ is v⊥α0 = vdα +vE , where vE = cE×B/B2

is the E × B drift. The first-order velocity is the polarization
velocity, which can be expressed as

vpol,α = v⊥α − v⊥α0 � b

ωcα

× d

dt
v⊥α0

+
1

nmαωcα

{
b ×

[
pα

(
∇ × b

ωcα

)
· ∇v⊥i0

]
+ b × ∇⊥

[ pα

2ωci
∇ · (b × v⊥α0)

]
− ∇⊥

[ pα

2ωcα

∇⊥ · v⊥α0

]}

+
1

nmαωcα

b ×
[
Gακ − ∇Gα

3

]
, (4)

where d/dt = ∂t + (vE + V‖αb) since, from the ordering, vpol

can be dropped and the diamagnetic drift velocity contribution
is canceled out by the first term of equation (2).

Using the plasma velocity evaluated within the drift
ordering, it is possible to derive the equations that are solved
by GBS. Within this derivation, we consider the cold ion
approximation, Ti � Te, neglecting pi effects, except for the
Gi terms (kept for numerical reasons). We remark that the
cold ion approximation is fulfilled in the basic plasma physics
experiments considered herein. In the SOL, and especially in
the far SOL, experiments and theoretical investigations point
out that turbulence is driven by the resistive ballooning mode,
whose main properties are described within a cold ion model.
We also assume ∇ · b = 0, which is generally valid in linear
devices and in the SMT, while in tokamaks it corresponds to
neglecting finite aspect ratio effects (tests performed with a
linear stability code show that this term has a very weak impact
on the SOL linear instabilities).

2.1. Continuity equation

For the perpendicular motion of electrons we can set vpol,e = 0,
since electron FLR effects are negligible and the viscous part
is proportional to me/mi. Therefore the electron continuity
equation reads

∂n

∂t
+ ∇ ·

[
n(vE + vde + V‖eb)

]
= S, (5)

where S is the plasma density source. Equation (5) can be
rewritten as
∂n

∂t
= − c

B
[φ, n] +

2c

eB

[
nC(Te) + TeC(n) − enC(φ)

]
− n(b · ∇)V‖e − V‖e(b · ∇)n + S (6)

where the curvature operator is defined as

C(A) ≡ B

2

(
∇ × b

B

)
· ∇A (7)

and the Poisson bracket [A, B], which denotes [A, B] =
b · (∇A × ∇B), is introduced.

2.2. Vorticity equation

The vorticity equation is obtained by subtracting the ion and
electron continuity equations. This gives

∇ · (nvpol,i) + ∇‖ · (j‖b)/e − ∇ · (nvde) = 0 (8)

since the ion velocity is given by Vi = V‖ib + vE + vpol,i,
having neglected the ion diamagnetic current in the cold ion
limit. Equation (8) is equivalent to ∇ ·j = 0, meaning that the
displacement current is negligible and that there is no charge
accumulation in the plasma.

The divergence of the polarization velocity, ∇ · (nvpol,i),
can be simplified with the hypothesis that pi = 0 and using
the following relation:

∇ ·
(

b

B
×

[
Giκ − ∇Gi

3

])
= 1

3

b × κ

B
· ∇Gi. (9)
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This is derived noting that ∇ × (b/B) � 2b × κ/2 and that
bB · ∇ × κ � 0 for low βe plasmas, where ∇ × B = 0. The
expression of the polarization current appearing in the vorticity
equation can therefore be written as

∇ · nvpol,i = ∇⊥ · nc

Bωci

dE⊥
dt

+
1

3miωci
(b × κ) · ∇Gi. (10)

This expression is further simplified by using the Boussinesq
approximation [51]:

∇ · nc

Bωci

d

dt
∇⊥φ � nc

Bωci

d

dt
∇2

⊥φ. (11)

This is a common approximation in the fluid community that
considerably simplifies the vorticity equation. Using the fact
that diA/dt = ∂tA + c[φ, A]/B + V‖i(b · ∇)A, the following
expression is obtained:
∂

∂t
∇2

⊥φ = − c

B
[φ, ∇2

⊥φ] − V‖i(b · ∇φ)∇2
⊥φ

+
miω

2
ci

e

[
(b · ∇)(V‖i − V‖e) + (V‖i − V‖e)

1

n
(b · ∇)n

]
+

2B

cmi

[
C(Te) +

Te

n
C(n)

]
+

B

3cmin
C(Gi). (12)

A convenient expression for Gi still needs to be derived. From
its definition, in fact, one has

Gi = −3η0i

[
2

3
(b · ∇)V‖i +

c

3B
C(φ)

]
(13)

and an analogous expression is valid for Ge, that is

Ge = −3η0e

{
2

3
(b · ∇)V‖e

+
c

eB

[
5

3
C(Te) +

5

3

Te

n
C(n) +

1

3
eC(φ)

] }
(14)

2.3. Magnetic field

Electromagnetic perturbations in the system introduce both
compressional and shear Alfven waves. Since the
compressional Alfven wave is several orders of magnitude
faster than the typical turbulent fluctuations, it is important
to remove it from the system. This is done by assuming that
the perturbed potential vector is parallel to the background
magnetic field, δA = −ψb0, being b0 the unit vector in
the direction of the unperturbed magnetic field. Within the
hypotheses considered for the derivation of the GBS model, in
particular βe � 1, and observing that the equilibrium magnetic
field varies on spatial scales longer than the fluctuation scale
lengths, the perturbed magnetic field is perpendicular to b0 and
given by

δB = −∇ × (ψb0) � b0 × ∇⊥ψ = δB⊥. (15)

Moreover, the Ampere’s law stating the evolution of ψ

writes

∇2
⊥ψ = 4π

c
j‖, (16)

while the electric field is given by

E = −∇φ +
1

c

∂ψ

∂t
b0. (17)

2.4. Motion along the magnetic field

The parallel component of the electron momentum equation is

men
∂V‖e

∂t
+

en

c

∂ψ

∂t
= −men

c

B
[φ, V‖e] − menV‖e(b · ∇)V‖e

− 2

3
(b · ∇)Ge − e2n2

σ‖
(V‖e − V‖i) + en(b · ∇)φ

− Te(b · ∇)n − 1.71n(b · ∇)Te (18)

where we have used b · ∇ · πe = 2(b · ∇)Ge/3, since the FLR

part of the stress tensor is perpendicular to the magnetic field.
The ion momentum equation is obtained by summing the ion
and electron equations and neglecting the electron inertia. One
gets

min
∂V‖i

∂t
= −min

c

B
[φ, V‖i] − minV‖i(b · ∇)V‖i

− 2

3
(b · ∇)Gi − n(b · ∇)Te − Te(b · ∇)n. (19)

2.5. Temperature equations

Neglecting heat generation due to friction, collisional heat
exchange, and ohmic heating due to parallel conductivity, the
Braginskii equation for the electron temperature in the drift-
reduced limit is

∂Te

∂t
= − c

B
[φ, Te] − V‖e(b · ∇)Te

+
4

3

c

eB

[
7

2
TeC(Te) +

T 2
e

n
C(n) − eTeC(φ)

]
+

2

3e

{
Te

[
0.71(b · ∇)V‖i − 1.71(b · ∇)V‖e

]
+ 0.71Te(V‖i − V‖e)

1

n
(b · ∇)n

}
+ ST , (20)

where ST is the plasma heat source.

2.6. The GBS system of equations

The model implemented in the GBS code is constituted by
the continuity equation, (5), the vorticity equation, (12),
Ampere’s law, (16), the equation for the ion and electron
parallel motion, (19) and (18), and the equation for the electron
temperature, (20).

These equations are normalized as follows (tilde denotes
a normalized quantity): n = ñn0, t = t̃R/cs0, φ =
φ̃Te0/e, Te = T̃eTe0, V‖e = Ṽ‖ecs0, V‖i = Ṽ‖ics0, B =
B̃B0, ψ = ψ̃cs0miβe/(2ec), where n0, Te0, B0 are the
reference density, temperature, and magnetic field, while the
normalization quantities cs0 and ρs0 are defined as cs0 =√

Te0/mi, ρs0 = cs0/�ci, being �ci = eB0/(mic). In the
directions perpendicular to the magnetic field, distances are
normalized to ρs0, while in the direction along the magnetic
field the macroscopic length R is used (for SMT and tokamak
simulations it corresponds to the major radius). In the
following, in order to simplify the notation, we drop the
tildes: therefore, hereafter all the quantities are normalized.

4
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The normalized system of equations evolved by GBS can be
written as
∂n

∂t
= − R

ρs0

1

B
[φ, n] +

2n

B

[
C(Te) +

Te

n
C(n) − C(φ)

]
− n(b · ∇)V‖e − V‖e(b · ∇)n + Dn(n) + S (21)

∂ω

∂t
= − R

ρs0

1

B
[φ, ω] − V‖i(b · ∇)ω

+ B2

[
(b · ∇)(V‖i − V‖e) +

(V‖i − V‖e)

n
(b · ∇)n

]
+ 2B

[
C(Te) +

Te

n
C(n)

]
+

B

3n
C(Gi) + Dω(ω) (22)

∂V‖e

∂t
+

mi

me

βe

2

∂ψ

∂t
= − R

ρs0

1

B
[φ, V‖e] − V‖e(b · ∇)V‖e

− mi

me

2

3
(b · ∇)Ge − mi

me
ν(V‖e − V‖i) +

mi

me
(b · ∇)φ

−miTe

nme
(b · ∇)n − 1.71

mi

me
(b · ∇)Te + DV‖e(V‖e) (23)

∂V‖i

∂t
= − R

ρs0

1

B
[φ, V‖i] − V‖i(b · ∇)V‖i − 2

3
(b · ∇)Gi

−
[
(b · ∇)Te +

Te

n
(b · ∇)n

]
+ DV‖i(V‖i) (24)

∂Te

∂t
= − R

ρs0

1

B
[φ, Te] − V‖e(b · ∇)Te

+
4

3

Te

B

[
7

2
C(Te) +

Te

n
C(n) − C(φ)

]
+

2Te

3

[
0.71(b · ∇)V‖i − 1.71(b · ∇)V‖e

+ 0.71
(V‖i − V‖e)

n
(b · ∇)n

]
+ DTe(Te) + D‖

Te
(Te) + ST (25)

which are coupled to Ampere’s law, ∇2
⊥ψ = n(V‖i −V‖e), and

to the Poisson equation ∇2
⊥φ = ω. The normalised resistivity

ν has been introduced, ν = (e2nR)/(miσ‖Cs0). We also note
that diffusion operators D and D‖ have been introduced for
numerical purposes: GBS allows the choice between standard
diffusion and/or fourth-order hyperdiffusion operators.

We notice that an energy conservation law can be obtained
starting from the GBS equations, following a development
similar to the one carried out in [10]. This will be the subject
of a future publication. The main differences with respect to
the model in [10] come from the fact that GBS considers a
simulation domain that is not periodic, therefore fluxes at the
simulation boundaries have to be taken into account, as well
as those from the presence of plasma and heat sources.

2.7. Some specific models: linear devices, SMT and tokamak
SOL

The curvature operator, C, the perpendicular Laplacian
operator, ∇2

⊥, the parallel gradient, b · ∇, and the Poisson
bracket, [A, B], that appear in equations (21)—(25), have
to be specified for each geometry; this is made easy by the

GBS modular coding. In particular, herein we focus on
GBS simulations of turbulence in linear devices, in the SMT
geometry, and tokamak SOL. We now provide the expressions
for the operators in these three geometries.

According to typical experimental data, plasma turbulence
in linear machines, such as LAPD, can be described by
considering the electrostatic limit. A coordinate system is
chosen such that x and y are coordinates in the perpendicular
plane, and z is the parallel direction. The operators assume
a particularly simple form: C = 0, [A, B] = ∂xB∂yA −
∂xA∂yB, ∇2

⊥ = ∂2
x + ∂2

y , and b · ∇ = ∂z.
For SMT and tokamak SOL simulations, we consider

a coordinate system where we denote the perpendicular
coordinates with x and y, being x the radial coordinate, and
y the coordinate perpendicular to both x and the magnetic
field. We use z for the periodic toroidal direction, such that
0 < z < 2π . In the SMT, where electrostatic turbulence
is considered, the expression for the operators is C = ∂y ,
[A, B] = ∂xB∂yA − ∂xA∂yB, ∇2

⊥ = ∂2
x + ∂2

y , and

b · ∇ = ∂

∂z
+

Lv

2πNR

∂

∂y
, (26)

where N is the number of field line turns in the SMT, R its
major radius, and Lv is the height of the device.

On the other hand, for tokamak SOL turbulence, herein
we consider electromagnetic turbulence in configurations with
circular magnetic flux surfaces, a toroidal limiter on the high-
field side of the simulation domain, and no magnetic shear
(a discussion on the impact of magnetic shear on SOL linear
modes is in [52]). In this case we set C = − sin θ∂x −cos θ∂y ,
[A, B] = ∂xB∂yA − ∂xA∂yB, ∇2

⊥ = ∂2
x + ∂2

y , and b · ∇A =
b0 · ∇A + β[ψ, A]/(2B), being

b0 · ∇ = ∂

∂z
+

a

Rq

∂

∂y
, (27)

q the safety factor, and θ = y/a the poloidal angle defined
so that θ = 0 and θ = 2π at the equatorial high-field
side midplane. We note that the term [ψ, A] represents the
component of the parallel gradient of A along the turbulent
perturbations of the magnetic field.

In the simulations presented in this paper, we consider
standard perpendicular and parallel diffusion operators, e.g.
D = ∂2

x + ∂2
y . The source term is set to mimic the plasma

production process specific to each device. For example, for
the LAPD linear machine [40], where plasma is produced by
a plasma cathode, a top-hat density source has been chosen,
which is uniform along the axial direction. For the TORPEX
SMT, two Gaussian sources have been implemented in order
to simulate the plasma sources at the electron-cyclotron and
upper-hybrid resonance layers [53]. Finally, in the SOL
configuration, a radially localized Gaussian source models the
particle and heat outflow from the tokamak core.

2.8. Boundary and initial conditions

GBS allows the choice between Neumann and Dirichlet
boundary conditions for all the fields. For V‖i and V‖e we
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have also implemented Bohm’s boundary conditions, which
state that V‖i = √

Te, and V‖e = √
Te exp(� − φ/Te) at the

plasma sheath edge, where � = log
√

mi/(2πme) � 3 [3].
When a new simulation is started, each quantity A is

initialized according to A(t0) = A0 + Ã(x, y, z), where A0

is a constant value, and Ã(x, y, z) is a random field whose
amplitude can be chosen. Sources inject plasma particles
and heat, steepening the plasma profile and triggering plasma-
gradient driven instabilities. The wavelength of the instability
that dominates the simulations matches the fastest growing
instability evaluated with a linear stability code. After a
transient phase, a quasistationary state is reached in which the
plasma, generated by the source and transported by turbulence,
is eventually removed from the system by losses at the vessel
walls. The analysis is typically focused on this quasi-stationary
phase.

3. The GBS code

3.1. Numerical algorithm

In GBS, the domain is discretized using Nx , Ny , Nz intervals
in the x, y, z direction, respectively. We define the grid point
xi = (i − 1/2)�x, for i = 0, .., Nx + 1, the width of intervals
being �x = Lx/Nx , and the points corresponding to i = 0 and
i = Nx + 1 therefore representing the ghost cells. Analogous
expressions are valid in the y direction, i.e. yj = (j −1/2)�y.
Regarding the z direction, we remark thatLz = 2π for the SMT
and the tokamak geometry, and that the grid is defined for the
n, Te, φ, and ω variables as zk = k�z while, for numerical
reasons, it is shifted by half a cell for V‖i, V‖e, and ψ , i.e.
zk = (k−1/2)�z. Each physical quantity A(x, y, z) is written
as Aijk ≡ A(xi, yj , zk).

The derivatives in the x, y directions are performed with
a standard centered finite-difference scheme, e.g.

∂

∂x
A(x, y, z) � Ai+1,j,k − Ai−1,j,k

2�x
(28)

except for the Poisson bracket terms, which are discretized
according to the Arakawa scheme [54]. Regarding the parallel
gradient, in the case of a linear machine it reduces to the
derivative along the z direction and can be treated with standard
centered finite-difference scheme. On the other hand, it has to
be approached with particular care in the SMT and SOL cases.
In these configurations the discretization of the operator in
equations (26) and (27) has to take advantage of the fact that
turbulence is mostly aligned with the field lines in order to
reduce the computational cost of the simulations. In GBS
we align the (y, z) grid with the field lines, such that the
resolution along z can remain low. For this purpose, for the
SOL we choose the number of grid points, Ny and Nz, in such
a way that �j = Ny/(qNz) is an integer, where �j represents
for a field line the shift of grid points along the y direction
in correspondence to a z shift of one grid point (analogous
expressions are valid for the SMT). We then approximate the
parallel derivative as

b0 · ∇A|xi ,yj ,zk
� 1

2�z
(Ai,j+�j,k+1 − Ai,j−�j,k−1.). (29)

Table 1. Numerical convergence test with the number of spatial grid
points for a SOL simulation with βe = 8 × 10−4, ν = 0.1, q = 4,
mi/me = 200, Ly = 800, R = 1000.

Nx = 128 Nx = 128 Nx = 128
Ny = 512 Ny = 512 Ny = 1024
Nz = 32 Nz = 64 Nz = 64

R/Ln 9.28 10.13 10.67
R/LT 5.48 5.44 5.41

In doing this, care must be taken in considering that the
parallel velocities are evaluated corresponding to a different
z grid with respect to the density, temperature and potential.
This scheme allows us to consider only safety factors that
take integer values. We remark that, unlike in the closed flux
surface region, this does not constitute an important limitation
in exploring the SOL physics since the magnetic field lines
are open and terminate on the vessel. Therefore q has only a
geometrical meaning in the SOL, related to the ratio between
the toroidal and poloidal components of the magnetic field [3].

The Laplacian operator in the Poisson equation is
discretized using a standard second-order finite difference.
Depending on the geometry, the obtained matrix can be solved
by direct matrix inversion or can be reduced to the solution
of a set of tridiagonal systems, by applying the fast Fourier
transform (FFT) algorithm in one direction.

In order to time advance the fluid equations we use a
standard fourth-order Runge–Kutta scheme. An adaptative
time stepping scheme has also been implemented, which is a
third-order Runge–Kutta scheme with an embedded second-
order method used to control the local integration error [55].
Finally, we note that the equations implemented in GBS are
rewritten in terms of θn = log n and te = log Te, to ensure the
positivity of n and Te.

Numerical tests have been performed to check the
convergence properties of the GBS numerical method with
respect to the time step and the spatial grid. First, by
testing separately each discretized operator against analytical
solutions, we confirmed that the error due to the time
discretization scales as �t4, that the error affecting the
discretization of the perpendicular directions scales as �x2 and
�y2, while the numerical error affecting the parallel derivative
scales as �z2. Second, we have carried out convergence
tests of the GBS turbulence results by considering, because of
the chaotic features of turbulence, time-averaged properties.
For a SOL simulation, the results of one of these tests are
shown in table 1, which displays the normalized time- and
y-averaged density and temperature scale lengths for three
different computational grids. Similar convergence tests have
been performed with the temporal discretization.

3.2. Parallelization

GBS is parallelized with a domain decomposition technique
using MPI. The physical domain in the x direction is equally
divided intoNPx

parts and the physical domain in the z direction
is equally divided into NPz

parts; the total number of processes
is therefore NP = NPx

NPz
. In each process, in the x and z
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Figure 1. GBS speed up on a Cray XT6 using the FFT transform
(blue crosses) and the MUMPS library (magenta triangles), and on a
BlueGene/P with FFT transform (red circles). Ideal scalings are
indicated with the dashed lines.

directions, one ghost cell must be added to both sides of the
domain. As a consequence, an array representing a physical
quantity will have a size of (Nx/NPx

+ 2)(Ny + 2)(Nz/Pz + 2)

elements in each process.
Message passing among the different processes is required

for updating the ghost cells and for the solution of the
Poisson equation. For each array Aijk , each process must
communicate (Nx/NPx

+ 2)(Ny + 2) elements to the two
neighboring processes in the z communicator and (Nz/NPz

+
2)(Ny + 2) elements to the two neighboring processes in
the x communicator. The boundary conditions for V‖e and
V‖i require some additional communications if Bohm-like
boundary conditions are chosen.

At each time step, the Poisson equation is solved to obtain
φ (and a second Poisson equation has to be solved to obtain ψ ,
in the case of electromagnetic simulations). In the case that the
direct matrix inversion is performed, this is accomplished by
using parallel libraries like MUMPS [56], Pardiso [57, 58], or
LAPACK [59]. Within the FFT algorithm, a parallel transpose
operation is performed in order to perform the FFT and the
tridiagonal matrix inversion on the same processor.

To provide an idea of the numerical cost of a GBS
simulation, we notice that the largest SOL GBS simulations are
run on a grid of 2048×128×128 points in the poloidal, toroidal,
and radial direction, respectively. Scaling tests performed on a
Cray XT6 machine have shown that one time step can be carried
out in 0.5 seconds on 1024 processors. Since the typical time
step is of the order of 10−4 and in order to get steady state
simulations one has to cover a time span of the order of 70,
105 CPU hours are necessary to perform one simulation. The
GBS strong scaling performances are shown in figure 1.

4. Simulation results

4.1. Linear devices

GBS simulations have been performed using LAPD-like
parameters [40]. LAPD is a device that creates a linear plasma

Figure 2. Snapshot of plasma density in a linear device. The plane
perpendicular to the magnetic field is displayed. The
three-dimensional simulation (left) is compared with the
two-dimensional one (right). The similar level of transport shown
by the two simulations reveals that k‖ = 0 modes are those
dominating the plasma dynamics.

approximately 18 m long and 0.3 m in radius with straight
magnetic field lines that terminate on the end walls. Among
its many uses, this experiment has been applied to the study of
turbulence and transport [60–64].

Global three-dimensional two-fluid simulations of
turbulence in a linear device with LAPD-like plasma
parameters and Bohm sheath boundary conditions in the
parallel direction are presented in [36]. The GBS simulation
results are somewhat unexpected: it was found that drift waves,
although present, are not the main source of heat and particle
cross-field transport in the device. Nor are sheath-driven
instabilities [65], which arise in the system from the sheath
(Bohm) boundary conditions in the parallel direction [3].
Rather, the main agent of transport is the Kelvin–Helmholtz
(KH) instability. This is a fully global mode, driven by shear in
the equilibrium electrostatic potential arising from the sheath
boundary conditions [3]: eφ � �Te. The nonlinear evolution
of the KH mode produces large-scale eddies that are the main
sources of cross-field profile relaxation.

This finding has been tested by comparing the results of
three-dimensional and two-dimensional simulations. Since
the two-dimensional simulations assume k‖ = 0, preventing
the growth of the drift waves, the similarity of their results
with respect to the ones from three-dimensional simulations
confirms that drift waves do not play a major role in the
plasma dynamics. Moreover, tests where the drive of the
KH instability is removed from the system show a strong
suppression of the turbulence, confirming the nature of the
plasma dynamics.

Typical turbulence snapshots are shown in figure 2.
The largest perpendicular structures correspond to the most
unstable KH modes in the system. These are global modes
with a radial extent comparable to L0, the radial gradient scale
length of φ, poloidal wavenumbers kθL0 ∼ 1, and k‖ � 0. The
shorter scale activity in the plots is produced by drift waves and,
to a lesser extent, sheath modes.

4.2. SMT

The SMT configuration is characterized by the toroidal and
vertical components of the magnetic field, Bϕ and Bv , which
create helicoidal field lines that terminate on the upper and
lower walls of the torus vessel [41, 42, 66–72]. The goal
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Figure 3. The vertical mode number, l, is shown as function of N ,
the number of field line turns in an SMT. Circles denote the
TORPEX experimental results and their relative error bars, while
solid lines interpolate the GBS results, which point out the presence
of the ideal-interchange mode for N � 7 (green line) and the
resistive interchange mode for N � 7 (red line).

of SMT experiments is to allow detailed studies of plasma
turbulence in a configuration that, like the SOL of magnetic
fusion devices, features open field lines, magnetic curvature,
and plasma gradients.

Experiments show that SMT plasma turbulence presents
a number of turbulent regimes. The presence of ideal-
interchange instabilities with k|| = 0 has been noted in a
number of studies (see, e.g. [71, 72]), as well as k|| 	= 0
instabilities, typically interpreted as drift waves (see, e.g. [73–
75]). The transition from k|| = 0 ideal-interchange mode
dominated turbulence to a finite k|| 	= 0 state is observed in
the TORPEX device as the pitch angle of the field lines with
respect to the upper and lower walls is decreased [76, 77].
The pitch can be expressed in terms of N , the total number
of field line turns in the SMT. Over one toroidal circuit
around the machine, the field lines are displaced vertically
by � = 2πRBv/Bϕ , where R is the major radius. Denoting
the height of the vacuum vessel by Lv , the number of turns
from bottom to top is thus N = Lv/� = LvBϕ/(2πRBv).
The pitch decreases as N is increased, and the onset of finite
k|| 	= 0 fluctuations occurs when N becomes sufficiently large.
Based on TORPEX measurements, in figure 3, the vertical
mode number l (corresponding to a vertical wavenumber
kv = 2πl/Lv) is plotted as a function ofN . The k|| = 0 regime,
in which l = N , is observed for small N � 7. The dominant
toroidal mode number in this case is n = 1, the expected value
given k|| = 0 and l = N . For N � 7 the turbulence transitions
to a state dominated by l = 1 fluctuations (one wavelength in
the vertical direction from bottom to top), which corresponds
to a small but finite k|| = 1/(RN). The dominant toroidal
mode number in this regime is n = 0; that is, the turbulence
becomes toroidally symmetric.

Using GBS simulations, it has been possible to predict
the character of the SMT turbulence as a function of N

and other parameters [35]. Focusing on cases in which
shear flow plays a minor role, GBS simulations show that
three turbulent regimes are present in the SMT: (i) an ideal-
interchange regime characterized by k|| = 0, l = N and

Figure 4. Snapshots of plasma turbulence in the SMT configuration.
The electrostatic potential φ is displayed on two poloidal cross
sections and on the toroidal midplane. On the left panel, we show an
N = 2 case, with k‖ = 0 ideal-interchange dominated turbulence.
On the right panel, the N = 16 configuration displays the typical
dynamics dominated by the resistive interchange modes with k‖ 	= 0
and l = 1.

n = 1; (ii) a resistive interchange regime with k|| 	= 0,
n = 0, and l = 1; and (iii) a drift-wave regime that is
obtained for sufficiently steep gradients Lp < Lp,crit and is
characterized by short vertical wavelengths, k⊥ρs ∼ 0.5. At
the relatively high electron–neutral collisionality typical of
SMT experiments, GBS simulations suggest that the transport
driven by interchange modes prevents the gradient scale
lengths from steepening into the drift-wave dominated regime.
The behavior of l in figure 3 therefore reflects a transition
from ideal-interchange mode turbulence to a state dominated
by resistive interchange instabilities (see figure 4).

The resistive interchange modes in the SMT are similar to
resistive ballooning modes in the edge region of tokamaks:
they have maximum growth rates comparable to the ideal-
interchange mode γ 2 ∼ c2

s /(RLp) and occur at given parallel
and perpendicular wavenumbers when the conductivity is
sufficiently small. The instability threshold follows from the
vorticity equation, (22): the polarization drift term ∂t∇2

⊥φ

must exceed the line bending term proportional to ∇‖j‖; with
Ohm’s law, equation (23), j‖ ∼ −σ‖∇‖φ, this condition yields
γ k2

⊥ > 4πV 2
Ak2

||σ||/c2. Because k2
‖ = 1/(NR)2, line bending

becomes negligible for sufficiently high N . Since k⊥ ∼ 2π/Lv

(l = 1), the numerical study of such modes requires global
simulations that cover the entire SMT domain, which were
performed for the first time with GBS.

GBS has also been used to simulate the impact of an
externally imposed bias voltage on the interchange-driven
turbulence and transport in the SMT device [38]. This
study is inspired by the bias experiments performed on the
Helimak SMT device [69], and is focused on the ideal-
interchange instability regime. In the grounded case, the
turbulent structures of the density and temperature driven by
the interchange mode are bursty, and have relatively wide
radial extents on the low-field side. In the biased case, a
bias voltage is applied to the upper and lower boundaries over
a small radial extension. The structures of plasma potential
are changed in response to the bias voltage, resulting in
equilibrium sheared flows. These bias-induced vertical flows
located in the region with steep pressure gradients reduce
the radial extent of turbulent structures, and lower convective
transport of particles and heat on the low-field side, consistent
with Helimak observations.
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Figure 5. Snapshot of electron pressure in the SOL. A poloidal plane is represented on the left panel, while a radial cut and a toroidal cut are
shown on the right upper panel and right lower panel, respectively.

4.3. Tokamak SOL

Herein we report the first simulations of SOL turbulent
dynamics that have been carried out with GBS. We have
considered a relatively simple tokamak configuration, with
circular flux surfaces, neglecting finite aspect ratio terms and
magnetic shear, and with a toroidal limiter located at the
equatorial plane, on the high-field side of the machine.

We show a snapshot of turbulence, displaying the plasma
pressure, pe, and electrostatic potential, φ, in figures 5 and 6.
We consider the projections on the poloidal, toroidal and radial
planes. The plasma dynamics that is displayed is the result of
the interplay between plasma outflow from the tokamak core,
turbulent transport, and losses at the limiter plates, which are
located in correspondence of y = 0 and y = 800. Bohm’s
boundary conditions are implemented at the limiter plates
imposing φ = �Te.

The plasma outflowing from the core is modeled as density
and temperature sources located at x = 30, uniform in the y

direction and with a Gaussian shape in the radial direction,
with half width w = 5. Therefore, the region of interest in the
simulation to model the SOL turbulence is for x > 30. From
the source region, plasma is transported in the radial direction
by turbulence. In the present SOL simulation, turbulence
results from the growth of the resistive ballooning mode that,
as it is visible in the turbulent snapshots in figures 5 and 6,
has the longest parallel wavelength allowed by the system,
k‖ ∼ 1/(qR). The poloidal mode number, m, is constrained
between a lower limit, due to the field-line bending as for the
resistive interchange mode in the SOL, and an upper limit
due to curvature-induced plasma compressibility [50]. The

toroidal mode number results from n � m/q. According to the
ballooning nature of the instability, turbulence is more active
for y > 400: in fact, it is driven in the unfavorable curvature
region on the low-field side of the SOL and then it is convected
vertically upward by the E × B drift.

Although relatively simple, the present model allows us to
identify some of the most prominent elements that characterize
SOL turbulence measurements. In fact, turbulence presents
a coherent dynamics close to the source region while it is
dominated in the far SOL by intermittent transport events.
Those are the so-called plasma blobs, which have attracted
great attention from the plasma physics community since they
can be detrimental for the tokamak first wall [78]. Through
GBS simulations it is possible to study their dynamics, from
their birth to the dissipation on the limiter plates. In general, it
is observed that fluctuations have an amplitude comparable to
that of equilibrium quantities, and that there is no separation
of fluctuation and equilibrium scales. This makes it necessary
to treat turbulence globally, as carried out by GBS.

5. Code validation

Validation of plasma turbulence codes plays a fundamental
role in assessing the maturity of the understanding of plasma
dynamics and the predictive capabilities of simulations. A
validation project is a four-step procedure [79, 80]. First
(i), the simulation model needs to be qualified, i.e. it
is necessary to establish the applicability of the model
hypotheses for the simulated physical phenomenon. Second
(ii), verification of the code is necessary, in order to prove
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Figure 6. Same as in figure 5, for electrostatic potential.

that the code solves correctly the model equations. Third (iii),
simulations and experiments have to be compared considering
a number of physical quantities, common to the experimental
measurements and simulation results, and analyzed using
the same techniques. These physical quantities, denoted as
validation observables, should be identified and organized
into a hierarchy. This hierarchy is based on the number
of model assumptions and combinations of measurements
necessary to obtain the observable; i.e. how stringent each
observable is for comparison purposes. Fourth (iv), agreement
between simulations and experiments needs to be quantified by
using an appropriate composite metric, χ . This χ coefficient
should combine the results of the comparison of all the
observables, taking into account position in the hierarchy and
precision. Its purpose is to quantify the overall agreement
between experiment and simulation. The metric χ should
be complemented by an index, Q, which assesses the quality
of the comparison. Practically, Q quantifies the number of
observables that have been used for the validation and the
strength of the constraints they impose. We remark that the
validation procedures should remain simple. The goal is
not mathematical rigor, but a useful tool that can be easily
applied in order to compare models and assess their predictive
capabilities and their limitations.

While model qualification and code verification (points
(i) and (ii) of the validation guidelines) are now routinely
considered in plasma physics and their methodology has been
formulated in considerable detail, only recently has the plasma
physics community approached a rigorous methodology for
establishing the validation observables and the comparison
metric. With the development of the GBS code, we have

carried out a validation project with the goal of defining
the methodology for the comparison of experimental and
simulation results, and we have then applied it to the analysis
of the TORPEX device [31, 37].

In [31], we address point (iii) of the validation
methodology. Focusing on observables related to Langmuir
probe measurements on TORPEX plasmas, we consider a
number of physical quantities that can be used as observables
for experiment/simulation comparison. We classify the
observables according to a hierarchy that sums the number
of model assumptions and measurement combinations used
to obtain an observable from experimental measurements and
simulation results. Observables in this hierarchy go from the
measurement of the ion saturation current, which is a direct
experimental measurement and can be inferred directly from
density and temperature simulation data, to the measurement
of particle transport, which requires the combination of a
number of measurements with hypotheses that also challenge
the analysis of simulation data. The more assumptions needed,
the less stringent the comparison with respect to this observable
and, thus, its weight in the evaluation of the agreement between
experiments and simulations should be decreased. We also
point out that one has to use the same techniques to analyze
experimental and simulation data, in order to directly compare
the experimental and simulation values of each observable.

The construction of a global metric in order to
compare experiments and simulations and the definition of
the comparison quality, Q, point (iv) of the validation
methodology, are the subject of [37]. A key step in the
construction of the global metric is the quantification of
the agreement between experiment and simulation relative
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to each observable. We denote with ej and sj the values
of the j th observable used in the comparison, as coming
from the experimental measurement or the simulation results,
respectively. Most of the observables depend on space and
time, and typically the value of the observables is given on
a discrete number of points, denoted as Nj . We denote
with ej,i and sj,i the values of the j th observable at points
i = 1, 2, ..., Nj (the present notation can therefore be used for
zero-, one-, two-, etc, dimensional observables). For the j -th
observable, we normalize the distance dj between experiments
and simulations with respect to the uncertainty related to these
quantities:

dj =
√√√√ 1

Nj

Nj∑
i=1

(ej,i − sj,i)2

�e2
j,i + �s2

j,i

, (30)

where �ej,i and �sj,i are the uncertainties related to the
evaluation of ej,i and sj,i . Since simulations and experiments
can be considered to agree if they fall within the error bars,
we define the level of agreement between experiments and
simulations with respect to observable j as

Rj = tanh[(dj − d0)/λ] + 1

2
, (31)

with Rj � 0.5 corresponding to agreement (within the
experimental and simulation uncertainties), while Rj �
0.5 denoting disagreement (outside the experimental and
simulation uncertainties). Our tests show that the conclusions
of a validation exercise are not affected by the specific choices
of parameters in the range 1 � d0 � 2 and 0.1 � λ � 1, and
we believe that the values d0 = 1.5 and λ = 0.5 are reasonable
choices.

The overall level of agreement between simulations and
experiments can be measured by considering a composite
metric, which should take into account the level of agreement
of each observable, Rj , and weight it according to how
constraining each observable is for comparison purposes. This
means that the hierarchy level of each observable and the
level of confidence characterizing the measurement or the
simulation of each observable have to be taken into account.
The higher the level in the primacy hierarchy and the bigger
the error affecting the observable measurement, the smaller
the weight of the observable should be. We thus define the
metric χ as

χ =
∑

j RjHjSj∑
j HjSj

, (32)

where Hj and Sj are functions defining the weight of each
observable according to its hierarchy level and the precision
of the measurement, respectively. Thanks to the definition of
Rj , χ is normalized in such a way that perfect agreement is
observed for χ = 0 (within the considered observables), while
simulation and experiment disagree completely for χ = 1.

The definition of Hj and Sj is somewhat arbitrary. Hj

should be a decreasing function of hierarchy levels. The
definition we adopt is Hj = 1/hj , where hj is the combined
experimental/simulation primacy hierarchy level (see [31] for
more details on the hj definition). This definition implies that if

no assumptions or combinations of measurements are used for
obtaining an observable, then Hj = 1. The quantity Sj should
be a decreasing function of the experimental and simulation
uncertainty. We introduce the following definition:

Sj = exp

(
−

∑
i �ej,i +

∑
i �sj,i∑

i

∣∣ej,i

∣∣ +
∑

i

∣∣sj,i

∣∣
)

(33)

such that Sj = 1 in the case of zero uncertainty.
The validation metric should be complemented by an

index, Q, that assesses the “quality" of the comparison. The
idea is that a validation is more reliable with a larger number
of independent observables, particularly if they occupy a
low level in the primacy hierarchy and the measurement and
simulation uncertainties are low. The quality of the comparison
Q can thus be defined as

Q =
∑

j

HjSj . (34)

We have applied the validation procedure to the
study of the TORPEX device. Owing to its detailed
diagnostics, possibility of parameter scans, and relatively
simple configuration, TORPEX is an ideal testbed to perform
experiment/simulation comparisons and to investigate the
corresponding methodological framework [41, 42]. As shown
in figure 7, we perform the comparison between experiments
and simulations through a scan in the N parameter, allowing
the properties of the TORPEX turbulence to pass from k‖ = 0
mode dominated turbulence to k‖ 	= 0 turbulence. Using a
relevant set of observables, we validate two models: three-
dimensional GBS simulations, able to describe the global
evolution of TORPEX plasma [35], and the reduced two-
dimensional GBS simulations [30], able to describe only the
evolution of k‖ = 0 modes. We show that the validation metric
is able to point out that the agreement of the two-dimensional
simulations and the experiment is no longer satisfactory when
k‖ 	= 0 modes are present in the experiment, which occurs
at N � 7. A detailed analysis of the agreement with respect
to each observable used for the comparison is presented in
[31, 37] and it points out that GBS is able to well predict the
modes that dominate the transport, while it overestimates the
plasma pressure scale length. Possible GBS improvements
that could lead to a better agreement between GBS results and
experiments are discussed in [37].

We believe that the proposed methodology can be easily
applied to discriminate among models, since a smaller χ

corresponds to a model or a code that provides a better global
representation of the physical phenomena at play. Moreover,
the proposed methodology is very useful to check how the
agreement varies with the control parameters. In fact, the
increase of χ that follows from a variation of a control
parameter points out the presence of a regime where a particular
model is not appropriate, presumably because at least one
physical phenomenon is not well captured. Thus, the most
direct use of the proposed validation methodology is related
to determining which code has to be used, and in which
parameter regime. On the other hand, while it is relatively
easy to discriminate among models and the different parameter
regimes, it is much more difficult to judge a model in absolute
terms.
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Figure 7. The results of the GBS validation against TORPEX experimental data are shown. The global metric, χ , and the quality of the
validation, Q, is shown for the three-dimensional GBS simulations (blue line) and the two-dimensional one (red line), as a function of N ,
the number of field line turns in the SMT.

6. Conclusions and outlook

In this paper we have described the GBS code, a tool to simulate
plasma turbulent dynamics in the tokamak SOL. Based on the
drift-reduced Braginskii equations, GBS is able to model SOL
plasma turbulence as the interplay between the plasma outflow
from the tokamak core, the turbulent transport, and the losses
at the limiter plates. GBS development has been progressive:
GBS has been first developed to model turbulence in basic
plasma physics devices, such as linear devices and SMT, which
contain some of the main elements of SOL turbulence but
in a simplified setting. In this paper we have summarized
the findings obtained from the simulation carried out in these
configurations. The code has then been extended to the SOL
geometry. We have reported the first simulations of SOL
turbulence. We have considered electromagnetic turbulence
with circular flux surfaces, neglecting finite aspect ratio terms
and magnetic shear, and with a toroidal limiter located at the
high-field side of the machine.

While GBS is still being applied to carry out simulations
of basic plasma experiments, including other devices than the
ones mentioned here, for instance the HelCat device [81],
progress is being made in order to represent more accurately the
SOL configuration. In particular, we are introducing in GBS
finite aspect ratio effects, magnetic shear, and finite Ti effects.
We are also currently investigating the boundary conditions at
the limiter plates, in order to take into account the physics at the
sheath edge more accurately in our simulations [82]. Our goal
is to use the GBS code to study how SOL turbulence scales with
tokamak size, understanding the role of magnetic shear and β

and, ultimately, to obtain a diagram of the SOL turbulence
regimes depending on the tokamak operating parameters. In
the long term, our goal is to couple SOL turbulence simulations
with the simulation of plasma turbulence in the closed flux
surface region, within a diverted geometry. Following what has
already been done on the TORPEX device [83–85], the GBS
simulation results will also be used to integrate the particle
tracer trajectories, in order to study the dynamics of fast ions
and impurities in the SOL. Thanks to the code validation
methodology we have introduced, it will be possible to assess

the accuracy of our simulations at each step in the model
improvement.
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