843 research outputs found

    Sample-specific and Ensemble-averaged Magnetoconductance of Individual Single-Wall Carbon Nanotubes

    Full text link
    We discuss magnetotransport measurements on individual single-wall carbon nanotubes with low contact resistance, performed as a function of temperature and gate voltage. We find that the application of a magnetic field perpendicular to the tube axis results in a large magnetoconductance of the order of e^2/h at low temperature. We demonstrate that this magnetoconductance consists of a sample-specific and of an ensemble-averaged contribution, both of which decrease with increasing temperature. The observed behavior resembles very closely the behavior of more conventional multi-channel mesoscopic wires, exhibiting universal conductance fluctuations and weak localization. A theoretical analysis of our experiments will enable to reach a deeper understanding of phase-coherent one-dimensional electronic motion in SWNTs.Comment: Replaced with published version. Minor changes in tex

    Correlation between molecular orbitals and doping dependence of the electrical conductivity in electron-doped Metal-Phthalocyanine compounds

    Full text link
    We have performed a comparative study of the electronic properties of six different electron-doped metal phthalocyanine (MPc) compounds (ZnPc, CuPc, NiPc, CoPc, FePc, and MnPc), in which the electron density is controlled by means of potassium intercalation. In spite of the complexity of these systems, we find that the nature of the underlying molecular orbitals produce observable effects in the doping dependence of the electrical conductivity of the materials. For all the MPc's in which the added electrons are expected to occupy orbitals centered on the ligands (ZnPc, CuPc, and NiPc), the doping dependence of the conductivity has an essentially identical shape. This shape is different from that observed in MPc materials in which electrons are also added to orbitals centered on the metal atom (CoPc, FePc, and MnPc). The observed relation between the macroscopic electronic properties of the MPc compounds and the properties of the molecular orbitals of the constituent molecules, clearly indicates the richness of the alkali-doped metal-phthalocyanines as a model class of compounds for the investigation of the electronic properties of molecular systems

    High-performance nn-type organic field-effect transistors with ionic liquid gates

    Full text link
    High-performance nn-type organic field-effect transistors were developed with ionic-liquid gates and N,N"^"-bis(n-alkyl)-(1,7 and 1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide)s single-crystals. Transport measurements show that these devices reproducibly operate in ambient atmosphere with negligible gate threshold voltage and mobility values as high as 5.0 cm2^2/Vs. These mobility values are essentially identical to those measured in the same devices without the ionic liquid, using vacuum or air as the gate dielectric. Our results indicate that the ionic-liquid and nn-type organic semiconductor interfaces are suitable to realize high-quality nn-type organic transistors operating at small gate voltage, without sacrificing electron mobility

    Photon-assisted electron transport in graphene

    Full text link
    Photon-assisted electron transport in ballistic graphene is analyzed using scattering theory. We show that the presence of an ac signal (applied to a gate electrode in a region of the system) has interesting consequences on electron transport in graphene, where the low energy dynamics is described by the Dirac equation. In particular, such a setup describes a feasible way to probe energy dependent transmission in graphene. This is of substantial interest because the energy dependence of transmission in mesoscopic graphene is the basis of many peculiar transport phenomena proposed in the recent literature. Furthermore, we discuss the relevance of our analysis of ac transport in graphene to the observability of zitterbewegung of electrons that behave as relativistic particles (but with a lower effective speed of light).Comment: 5 pages, 2 figure

    Competition between Spin-Orbit Interaction and Zeeman Coupling in Rashba 2DEGs

    Get PDF
    We investigate systematically how the interplay between Rashba spin-orbit interaction and Zeeman coupling affects the electron transport and the spin dynamics in InGaAs-based 2D electron gases. From the quantitative analysis of the magnetoconductance, measured in the presence of an in-plane magnetic field, we conclude that this interplay results in a spin-induced breaking of time reversal symmetry and in an enhancement of the spin relaxation time. Both effects, due to a partial alignment of the electron spin along the applied magnetic field, are found to be in excellent agreement with recent theoretical predictions.Comment: 4 figures and 4 page

    Influence of the gate leakage current on the stability of organic single-crystal field-effect transistors

    Full text link
    We investigate the effect of a small leakage current through the gate insulator on the stability of organic single-crystal field-effect transistors (FETs). We find that, irrespective of the specific organic molecule and dielectric used, leakage current flowing through the gate insulator results in an irreversible degradation of the single-crystal FET performance. This degradation occurs even when the leakage current is several orders of magnitude smaller than the source-drain current. The experimental data indicate that a stable operation requires the leakage current to be smaller than $10^{-9} \ \mathrm{A/cm}^2$. Our results also suggest that gate leakage currents may determine the lifetime of thin-film transistors used in applications.Comment: submitted to Appl. Phys. Let
    corecore