24 research outputs found

    Rescate de patashte (Theobroma bicolor Humb & Bonpl.) y cushta (Theobroma angustifolium) dos especies promisorias en peligro de extinción en El Salvador

    Get PDF
    En El Salvador existen especies vegetales como el patashte (Theobroma bicolor) y la cushta (Theobroma angustifolium) parientes silvestres del cacao, con alto potencial nutritivo para la alimentación y como materia prima para la agroindustria y el desarrollo de productos como chocolate, atoles, snack, entre otros, no obstante, estas especies están en peligro de extinción, por lo que no se cuenta con mucha información técnica. Por tal motivo se realizaron giras de colecta de estas especies, en municipios, con tradición en la producción de cacao a fin de incluir ambas especies en los bancos de germoplasma de cacao que se establecieron como parte del proyecto de rescate de recursos genéticos de cacao. Sin embargo, la situación de ambas especies es crítica por el alto grado de erosión genética, ya que, solamente se lograron obtener muestras de frutos en el cantón Cangrejera, Izalco, Sonsonate. Estas muestras se llevaron al Laboratorio de Química Agrícola de la Facultad de Ciencias Agronómicas de La Universidad de El Salvador (UES), a fin de realizar análisis bromatológicos y conocer de manera preliminar su composición química. Asimismo, desarrollar viveros con ambas especies para siembra en las colecciones de la UES. Como resultado se encontraron concentraciones para patashte y cushta de 16.04 y 4.48% de proteína; de 33.81 y 23.93% de grasa; 35.02 y 44.75% de carbohidratos respectivamente. Por otra parte se establecieron plantas de patashte y cushta en el banco de germoplasma del campus universitario, Estación Experimental y de Prácticas (EEP), San Pedro Nonualco y La cooperativa Hacienda Santa Clara, procurando contribuir al rescate de las mismas. Se concluye que ambas especies tienen potencial para consumo directo con preparaciones artesanales y materia prima para elaboración de muchos productos alimenticios nutritivos, e incluirlos en programas de Seguridad Alimentaria y Nutricional (SAN), por lo que es importante y urgente, proponer y ejecutar estrategias de conservación in situ y ex situ

    Nitroheterocyclic drugs cure experimental <i>Trypanosoma cruzi</i> infections more effectively in the chronic stage than in the acute stage

    Get PDF
    The insect-transmitted protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, and infects 5-8 million people in Latin America. Chagas disease is characterised by an acute phase, which is partially resolved by the immune system, but then develops as a chronic life-long infection. There is a consensus that the front-line drugs benznidazole and nifurtimox are more effective against the acute stage in both clinical and experimental settings. However, confirmative studies have been restricted by difficulties in demonstrating sterile parasitological cure. Here, we describe a systematic study of nitroheterocyclic drug efficacy using highly sensitive bioluminescence imaging of murine infections. Unexpectedly, we find both drugs are more effective at curing chronic infections, judged by treatment duration and therapeutic dose. This was not associated with factors that differentially influence plasma drug concentrations in the two disease stages. We also observed that fexinidazole and fexinidazole sulfone are more effective than benznidazole and nifurtimox as curative treatments, particularly for acute stage infections, most likely as a result of the higher and more prolonged exposure of the sulfone derivative. If these findings are translatable to human patients, they will have important implications for treatment strategies

    Inflammatory and pro-resolving lipids in trypanosomatid infections: A key to understanding parasite control

    No full text
    © 2018 López-Muñoz, Molina-Berríos, Campos-Estrada, Abarca-Sanhueza, Urrutia-Llancaqueo, Peña-Espinoza and Maya. Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic inf

    Characterization of a novel antibiofilm effect of nitric oxide-releasing aspirin (NCX-4040) on <i>Candida albicans</i> isolates from denture stomatitis patients

    No full text
    <div><p><i>Candida albicans</i> biofilms play a key role in denture stomatitis, one of the most common oral pathologies in elderly people. Because biofilms are highly resistant to antifungals, new pharmacological strategies are needed. Aspirin and nitric oxide-donor molecules have both shown antibiofilm effects on <i>C</i>. <i>albicans</i>, making them promising candidates for treatment. In this study, we evaluated the antifungal/antibiofilm effect of a nitric-oxide releasing aspirin (NO-ASA) on <i>C</i>. <i>albicans</i> isolates from denture stomatitis patients <i>in vitro</i>. Disk diffusion assays showed that while NO-ASA had no antifungal effect, the drug potentiated fluconazole inhibition zone diameters, increasing the effect of fluconazole by 20–30% (p<0.05). The effect of NO-ASA on the morphogenesis of <i>C</i>. <i>albicans</i> was evaluated using light microscopy after inducing hyphae formation. For all clinical strains assayed, 125 μM NO-ASA significantly decreased the number of filamentous cells present (p<0.01). Adhesion to abiotic surfaces, a critical event for biofilm formation, was evaluated in 96-well polystyrene plates using crystal violet assay; 125 μM NO-ASA significantly inhibited adhesion. Biofilms were observed with scanning electron microscopy (SEM) and quantified using XTT reduction assay. NO-ASA decreased biofilm formation (IC<sub>50</sub> ranging from 300 μM to 700 μM), consistent with SEM findings of altered biofilm microarchitecture. PGE<sub>2</sub> and carboxy-PTIO (an NO scavenger) both blocked the antibiofilm effects of NO-ASA, suggesting that the efficacy of NO-ASA may be associated with both inhibition of PGE<sub>2</sub> synthesis and release of NO. NO-ASA is a promising novel antibiofilm agent for treating fluconazole-resistant strains of <i>C</i>. <i>albicans</i>.</p></div

    NO-ASA inhibits <i>C</i>. <i>albicans</i> planktonic morphogenesis.

    No full text
    <p><i>Upper Panel</i>: light microscopy photographs showing representative filamentous cells (hyphae or pseudohyphae) for the 17p strain after 3 h or 12 h of incubation with DMSO <b>(A, E)</b>; 800 μM fluconazole <b>(B, F)</b> or 500 μM aspirin <b>(C, G).</b> Cells treated with 500 μM NO-ASA <b>(D, H)</b> showed mainly budding yeast cells and scarce filamentous cells (arrow in H). <i>Lower panel</i>: Bars represent mean ± SD of percentage of filamentous cells as compared to untreated controls for each strain assayed after 3 hours of incubation (untreated control bars were omitted for clarity). ****p<0.0001 as compared to fluconazole alone (white bars); †p<0.05; †††p<0.0001 for comparisons between treatments as indicated; ns = no significant difference (two-way ANOVA).</p

    NO-ASA increases the antifungal effect of fluconazole in resistant strains.

    No full text
    <p>Bars represent mean ± SD of inhibition zone diameters. Discs contained 25 μg fluconazole, alone or in combination with 25 μg nitric oxide-releasing aspirin or 25 μg ASA. Controls containing only vehicle (DMSO), aspirin (ASA), or NCX-4040 NO-ASA showed no inhibition zone diameters (not shown). *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 as compared to fluconazole alone; †p<0.05; ††p<0.01 for comparisons between treatments as indicated; nd = inhibition zone not detected (two-way ANOVA).</p

    PGE<sub>2</sub> prevents the antibiofilm effect of NO-ASA.

    No full text
    <p>24-h biofilms were incubated with 250 μM or 1 mM NO-ASA for an additional 24 h in the presence or absence of exogenously-added PGE<sub>2</sub>. Bars represent the mean ± SD biofilm formation quantified through XTT reduction assay. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 as compared to NO-ASA-treated biofilms in the absence of PGE<sub>2</sub>.</p

    Biofilm microarchitecture is affected by NO-ASA treatment.

    No full text
    <p>Representative SEM analysis of 17p strain biofilms on coverslips in the presence or absence of 1 mM NO-ASA. Control biofilms were composed of a dense layer of filamentous cells <b>(A, B)</b>. Treatment with NO-ASA reduced the density of the biofilm layers and decreased the presence of filamentous cells <b>(C, D)</b>.</p

    Nitric Oxide scavenger prevents NO-ASA antibiofilm effect.

    No full text
    <p>Biofilms were pretreated with 200 μM carboxy-PTIO for 20 min at 37°C. Then NO-ASA 250 μM or 1 mM was added and biofilms were incubated for 24h at 37°C. Bars represent mean ± SD of biofilm formation quantified trough XTT reduction assay. * p<0.05; ** p<0.01; *** p>0.001; ****p>0.0001 as compared with control (DMSO). †p<0.05; ††p<0.01; ††† p>0.001; ††††p>0.0001 as compared between groups as indicated (one way ANOVA).</p
    corecore