586 research outputs found

    Is it more difficult to write or to cite a paper?

    Get PDF
    The structure of various indices that are used to evaluate the research output of a scientist is discussed on a moral base.Indices should be used with caution. Albeit scientists who work in the field of infometrics are aware on this, other scientistsof other disciplines may not be fully aware. Measuring quality in science is only the half story. Some verbal description isrequired too

    Impossible protest: noborders in Calais

    Get PDF
    Since the closure of the Red Cross refugee reception centre in Sangatte, undocumented migrants in Calais hoping to cross the border to Britain have been forced to take refuge in a number of squatted migrant camps, locally known by all as ‘the jungles.’ Unauthorised shanty-like residences built by the migrants themselves, living conditions in the camps are very poor. In June 2009, European ‘noborder’ activists set up a week-long protest camp in the area with the intention of confronting the authorities over their treatment of undocumented migrants. In this article, we analyse the June 2009 noborder camp as an instance of ‘immigrant protest.’ Drawing on ethnographic materials and Jacques Rancière's work on politics and aesthetics, we construct a typology of forms of border control through which to analyse the different ways in which the politics of the noborder camp were staged, performed and policed. Developing a critique of policing practices which threatened to make immigrant protest ‘impossible’, we highlight moments of protest which, through the affirmation of an ‘axiomatic’ equality, disrupted and disarticulated the borders between citizens and non-citizens, the political and non-political

    Capillarity

    Get PDF
    Capillarity is an important phenomenon in nature and life. In this note the theory upon which the capillary action relies as well as the interface shapes for certain types of capillary systems under gravity is briefly outlined. Schematic presen-tations are also given

    Properties and characterization of biodiesel from selected microalgea stains

    Get PDF
    The demand for alternative fuels has increased in the past several years[1]. Biofuels are gaining importance as significant substitutes for the depleting fossil fuels. The fact that biofuels are renewable fuels with very low emissions of CO2 in the lifecycle offers them a competitive advantage[2]. However, the first produced biodiesel derived from edible oil seed crops (first generation feedstocks), lurking a serious risk of disturbing the overall worldwide balance of food reserves and safety. The second generation feedstocks for biodiesel production obtained from non-edible oil seed crops, waste cooking oil, animal fats, etc., but these feedstocks are not sufficient to cover the present energy needs. Recent focus is on microalgae as the third generation feedstock[3]. Mi l d t t f l d b t th i lt ( ) b kih(l ) df h Microalgae do not compete for land, but they can grow in salty sea), brackish (lagoons) and fresh (lakes) water. Moreover, microalgae have high photosynthetic efficiency using solar energy, water and carbon dioxide to produce higher quantities of biomass than other feedstocks. In the present research work, two indigenous fresh water (ChlorF1, ChlorF2) and two marine (ChlorM1, ChlorM2) Chlorophyte strains have been cultivated successfully under laboratory conditions using commercial fertilizer (Nutrileaf 30-10-10, initial concentration=70 g/m3) as nutrient source. The produced biodiesel from the microalgae biomass achieved a range of 2.2 - 10.6% total lipid content and an unsaturated FAME content between 48 mol% and 59 mol%. The iodine value, the cetane number, the cold filter plugging point (CFPP) and the oxidative stability of the ultimate biodiesels were determined, based on the compositions of the four (4) microalgae strains and compared with the specifications in the EU and US standards, EN 14214 and ASTM D6751 respectively

    Post thoracotomy spinal cord compression in a child. A word of caution

    Get PDF
    AbstractINTRODUCTIONOxidised regenerated cellulose is a commonly used haemostatic agent in surgery which, in rare cases, has been held responsible for severe complications.PRESENTATION OF CASEA 6-year-old girl developed flaccid paraplegia following the excision of a large thoracic ganglioneuroblastoma. Magnetic resonance imaging revealed spinal cord compression at the T10–11 level and the patient underwent emergency decompression via the previous thoracotomy. At operation the causative factor was found to be a mass consisted of cellulose used at the original procedure to control local bleeding in the vicinity of the intervertebral foramen.DISCUSSIONThe accessibility of the spinal canal from the thoracic cavity through the opening of the intervertebral foramen may allow migration of material and in this case oxidized regenerated cellulose, commonly used during cardiothoracic procedures, can cause rare but severe complications such as compression of the spinal cord.CONCLUSIONThe value of hemostatic gauze is well established in cardiothoracic surgery. However, surgeon should be cautious with the application of material in the proximity of the intervertebral foramen, especially if this is to leave behind after the completion of the procedure

    Cellulose Nanofiber Biotemplated Palladium Composite Aerogels.

    Get PDF
    Noble metal aerogels offer a wide range of catalytic applications due to their high surface area and tunable porosity. Control over monolith shape, pore size, and nanofiber diameter is desired in order to optimize electronic conductivity and mechanical integrity for device applications. However, common aerogel synthesis techniques such as solvent mediated aggregation, linker molecules, sol⁻gel, hydrothermal, and carbothermal reduction are limited when using noble metal salts. Here, we present the synthesis of palladium aerogels using carboxymethyl cellulose nanofiber (CNF) biotemplates that provide control over aerogel shape, pore size, and conductivity. Biotemplate hydrogels were formed via covalent cross linking using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) with a diamine linker between carboxymethylated cellulose nanofibers. Biotemplate CNF hydrogels were equilibrated in precursor palladium salt solutions, reduced with sodium borohydride, and rinsed with water followed by ethanol dehydration, and supercritical drying to produce freestanding aerogels. Scanning electron microscopy indicated three-dimensional nanowire structures, and X-ray diffractometry confirmed palladium and palladium hydride phases. Gas adsorption, impedance spectroscopy, and cyclic voltammetry were correlated to determine aerogel surface area. These self-supporting CNF-palladium aerogels demonstrate a simple synthesis scheme to control porosity, electrical conductivity, and mechanical robustness for catalytic, sensing, and energy applications
    corecore