5,722 research outputs found

    Nekrasov Functions and Exact Bohr-Sommerfeld Integrals

    Full text link
    In the case of SU(2), associated by the AGT relation to the 2d Liouville theory, the Seiberg-Witten prepotential is constructed from the Bohr-Sommerfeld periods of 1d sine-Gordon model. If the same construction is literally applied to monodromies of exact wave functions, the prepotential turns into the one-parametric Nekrasov prepotential F(a,\epsilon_1) with the other epsilon parameter vanishing, \epsilon_2=0, and \epsilon_1 playing the role of the Planck constant in the sine-Gordon Shroedinger equation, \hbar=\epsilon_1. This seems to be in accordance with the recent claim in arXiv:0908.4052 and poses a problem of describing the full Nekrasov function as a seemingly straightforward double-parametric quantization of sine-Gordon model. This also provides a new link between the Liouville and sine-Gordon theories.Comment: 10 page

    Is Strong Gravitational Radiation predicted by TeV-Gravity?

    Get PDF
    In TeV-gravity models the gravitational coupling to particles with energies E\sim m_{Pl} \sim 10 TeV is not suppressed by powers of ultra-small ratio E/M_{Pl} with M_{Pl} \sim 10^{19} GeV. Therefore one could imagine strong synchrotron radiation of gravitons by the accelerating particles to become the most pronounced manifestation of TeV-gravity at LHC. However, this turns out to be not true: considerable damping continues to exist, only the place of E/M_{Pl} it taken by a power of a ratio \theta\omega/E, where the typical frequency \omega of emitted radiation, while increased by a number of \gamma-factors, can not reach E/\vartheta unless particles are accelerated by nearly critical fields. Moreover, for currently available magnetic fields B \sim 10 Tesla, multi-dimensionality does not enhance gravitational radiation at all even if TeV-gravity is correct.Comment: 7 pages, LaTe

    Stabilization of dipole solitons in nonlocal nonlinear media

    Full text link
    We address the stabilization of dipole solitons in nonlocal nonlinear materials by two different approaches. First, we study the properties of such solitons in thermal nonlinear media, where the refractive index landscapes induced by laser beams strongly depend on the boundary conditions and on the sample geometry. We show how the sample geometry impacts the stability of higher-order solitons in thermal nonlinear media and reveal that dipole solitons can be made dynami-cally stable in rectangular geometries in contrast to their counterparts in thermal samples with square cross-section. Second, we discuss the impact of the saturation of the nonlocal nonlinear response on the properties of multipole solitons. We find that the saturable response also stabi-lizes dipole solitons even in symmetric geometries, provided that the input power exceeds a criti-cal value.Comment: 29 pages, 8 figures, to appear in Phys. Rev.

    Brezin-Gross-Witten model as "pure gauge" limit of Selberg integrals

    Get PDF
    The AGT relation identifies the Nekrasov functions for various N=2 SUSY gauge theories with the 2d conformal blocks, which possess explicit Dotsenko-Fateev matrix model (beta-ensemble) representations the latter being polylinear combinations of Selberg integrals. The "pure gauge" limit of these matrix models is, however, a non-trivial multiscaling large-N limit, which requires a separate investigation. We show that in this pure gauge limit the Selberg integrals turn into averages in a Brezin-Gross-Witten (BGW) model. Thus, the Nekrasov function for pure SU(2) theory acquires a form very much reminiscent of the AMM decomposition formula for some model X into a pair of the BGW models. At the same time, X, which still has to be found, is the pure gauge limit of the elliptic Selberg integral. Presumably, it is again a BGW model, only in the Dijkgraaf-Vafa double cut phase.Comment: 21 page

    Genus-one correction to asymptotically free Seiberg-Witten prepotential from Dijkgraaf-Vafa matrix model

    Full text link
    We find perfect agreements on the genus-one correction to the prepotential of SU(2) Seiberg-Witten theory with N_f=2, 3 between field theoretical and Dijkgraaf-Vafa-Penner type matrix model results.Comment: 12 pages; v2: minor revision; v3: more structured, submitted versio

    Generalized matrix models and AGT correspondence at all genera

    Get PDF
    We study generalized matrix models corresponding to n-point Virasoro conformal blocks on Riemann surfaces with arbitrary genus g. Upon AGT correspondence, these describe four dimensional N=2 SU(2)^{n+3g-3} gauge theories with generalized quiver diagrams. We obtain the generalized matrix models from the perturbative evaluation of the Liouville correlation functions and verify the consistency of the description with respect to degenerations of the Riemann surface. Moreover, we derive the Seiberg-Witten curve for the N=2 gauge theory as the spectral curve of the generalized matrix model, thus providing a check of AGT correspondence at all genera.Comment: 19 pages; v2: version to appear in JHE

    Hitchin Equation, Singularity, and N=2 Superconformal Field Theories

    Get PDF
    We argue that Hitchin's equation determines not only the low energy effective theory but also describes the UV theory of four dimensional N=2 superconformal field theories when we compactify six dimensional ANA_N (0,2)(0,2) theory on a punctured Riemann surface. We study the singular solution to Hitchin's equation and the Higgs field of solutions has a simple pole at the punctures; We show that the massless theory is associated with Higgs field whose residual is a nilpotent element; We identify the flavor symmetry associated with the puncture by studying the singularity of closure of the moduli space of solutions with the appropriate boundary conditions. For the mass-deformed theory the residual of the Higgs field is a semi-simple element, we identify the semi-simple element by arguing that the moduli space of solutions of mass-deformed theory must be a deformation of the closure of the moduli space of the massless theory. We also study the Seiberg-Witten curve by identifying it as the spectral curve of the Hitchin's system. The results are all in agreement with Gaiotto's results derived from studying the Seiberg-Witten curve of four dimensional quiver gauge theory.Comment: 42 pages, 20 figures, Hitchin's equation for N=2 theory is derived by comparing different order of compactification of six dimensional theory on T^2\times \Sigma. More discussion about flavor symmetries. Typos are correcte
    • …
    corecore