36 research outputs found

    Spin squeezing as a measure of entanglement in a two qubit system

    Get PDF
    We show that two definitions of spin squeezing extensively used in the literature [M. Kitagawa and M. Ueda, Phys. Rev. A {\bf 47}, 5138 (1993) and D.J. Wineland {\it et al.}, Phys. Rev. A {\bf 50}, 67 (1994)] give different predictions of entanglement in the two-atom Dicke system. We analyze differences between the definitions and show that the Kitagawa and Ueda's spin squeezing parameter is a better measure of entanglement than the commonly used spectroscopic spin squeezing parameter. We illustrate this relation by examining different examples of a driven two-atom Dicke system in which spin squeezing and entanglement arise dynamically. We give an explanation of the source of the difference in the prediction of entanglement using the negativity criterion for entanglement. For the examples discussed, we find that the Kitagawa and Ueda's spin squeezing parameter is the sufficient and necessary condition for entanglement.Comment: 5 pages, 4 figure

    Response of a two-level atom to a narrow-bandwidth squeezed-vacuum excitation

    Get PDF
    Using the coupled-system approach we calculate the optical spectra of the fluorescence and transmitted fields of a two-level atom driven by a squeezed vacuum of bandwidths smaller than the natural atomic linewidth. We find that in this regime of squeezing bandwidths the spectra exhibit unique features, such as a hole burning and a three-peak structure, which do not appear for a broadband excitation. We show that the features are unique to the quantum nature of the driving squeezed vacuum field and donor appear when the atom is driven by a classically squeezed field. We find that a quantum squeezed-vacuum field produces squeezing in the emitted fluorescence field which appears only in the squeezing spectrum while there is no squeezing in the total field. We also discuss a nonresonant excitation and find that depending on the squeezing bandwidth there is a peak or a hole in the spectrum at a frequency corresponding to a three-wave-mixing process. The hole appears only for a broadband excitation and results from the strong correlations between squeezed-vacuum photons

    Variational analysis of flat-top solitons in Bose-Einstein condensates

    Full text link
    Static and dynamic properties of matter-wave solitons in dense Bose-Einstein condensates, where three-body interactions play a significant role, have been studied by a variational approximation (VA) and numerical simulations. For experimentally relevant parameters, matter-wave solitons may acquire a flat-top shape, which suggests employing a super-Gaussian trial function for VA. Comparison of the soliton profiles, predicted by VA and those found from numerical solution of the governing Gross-Pitaevskii equation shows good agreement, thereby validating the proposed approach.Comment: 14 pages, 5 figure

    Quantum rotation gates with controlled nonadiabatic evolutions

    Get PDF
    Quantum gates can be implemented adiabatically and nonadiabatically. Many schemes used at least two sequentially implemented gates to obtain an arbitrary one-qubit gate. Recently, it has been shown that nonadiabatic gates can be realized by single-shot implementation. It has also been shown that quantum gates can be implemented with controlled adiabatic evolutions. In this paper, we combine the advantage of single-shot implementation with controlled adiabatic evolutions to obtain controlled nonadiabatic evolutions. We also investigate the robustness to different types of errors. We find that the fidelity is close to unity for realistic decoherence rate

    Atomic coupler with two-mode squeezed vacuum state

    Get PDF
    We investigate the entanglement transfer from the two-mode squeezed state (TMS) to the atomic system by studying the dependence of the negativity on the coupling between the modes of the waveguides. This study is very important since the entanglement is an important feature which has no classical counterpart and it is the main resource of quantum information processing. We use a linear coupler which is composed of two waveguides placed close enough to allow exchanging energy between them via evanescent waves. Each waveguide includes a localized atom

    Entanglement and spin squeezing in the two-atom Dicke model

    Full text link
    We analyze the relation between the entanglement and spin-squeezing parameter in the two-atom Dicke model and identify the source of the discrepancy recently reported by Banerjee and Zhou et al that one can observe entanglement without spin squeezing. Our calculations demonstrate that there are two criteria for entanglement, one associated with the two-photon coherences that create two-photon entangled states, and the other associated with populations of the collective states. We find that the spin-squeezing parameter correctly predicts entanglement in the two-atom Dicke system only if it is associated with two-photon entangled states, but fails to predict entanglement when it is associated with the entangled symmetric state. This explicitly identifies the source of the discrepancy and explains why the system can be entangled without spin-squeezing. We illustrate these findings in three examples of the interaction of the system with thermal, classical squeezed vacuum and quantum squeezed vacuum fields.Comment: 7 pages, 1 figur

    Stationary two-atom entanglement induced by nonclassical two-photon correlations

    Full text link
    A system of two two-level atoms interacting with a squeezed vacuum field can exhibit stationary entanglement associated with nonclassical two-photon correlations characteristic of the squeezed vacuum field. The amount of entanglement present in the system is quantified by the well known measure of entanglement called concurrence. We find analytical formulas describing the concurrence for two identical and nonidentical atoms and show that it is possible to obtain a large degree of steady-state entanglement in the system. Necessary conditions for the entanglement are nonclassical two-photon correlations and nonzero collective decay. It is shown that nonidentical atoms are a better source of stationary entanglement than identical atoms. We discuss the optimal physical conditions for creating entanglement in the system, in particular, it is shown that there is an optimal and rather small value of the mean photon number required for creating entanglement.Comment: 17 pages, 5 figure

    Perspectives for a mixed two-qubit system with binomial quantum states

    Full text link
    The problem of the relationship between entanglement and two-qubit systems in which it is embedded is central to the quantum information theory. This paper suggests that the concurrence hierarchy as an entanglement measure provides an alternative view of how to think about this problem. We consider mixed states of two qubits and obtain an exact solution of the time-dependent master equation that describes the evolution of two two-level qubits (or atoms) within a perfect cavity for the case of multiphoton transition. We consider the situation for which the field may start from a binomial state. Employing this solution, the significant features of the entanglement when a second qubit is weakly coupled to the field and becomes entangled with the first qubit, is investigated. We also describe the response of the atomic system as it varies between the Rabi oscillations and the collapse-revival mode and investigate the atomic inversion and the Q-function. We identify and numerically demonstrate the region of parameters where significantly large entanglement can be obtained. Most interestingly, it is shown that features of the entanglement is influenced significantly when the multi-photon process is involved. Finally, we obtain illustrative examples of some novel aspects of this system and show how the off-resonant case can sensitize entanglement to the role of initial state setting.Comment: 18 pages, 9 figure
    corecore