159 research outputs found

    Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution

    Full text link
    We present deep echelle spectrophotometry of the brightest emission-line knots of the star-forming galaxies He 2-10, Mkn 1271, NGC 3125, NGC 5408, POX 4, SDSS J1253-0312, Tol 1457-262, Tol 1924-416 and the HII region Hubble V in the Local Group dwarf irregular galaxy NGC 6822. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10420 {\AA} range. We determine electron densities and temperatures of the ionized gas from several emission-line intensity ratios for all the objects. We derive the ionic abundances of C2+^{2+} and/or O2+^{2+} from faint pure recombination lines (RLs) in several of the objects, permitting to derive their C/H and C/O ratios. We have explored the chemical evolution at low metallicities analysing the C/O vs. O/H, C/O vs. N/O and C/N vs. O/H relations for Galactic and extragalactic HII regions and comparing with results for halo stars and DLAs. We find that HII regions in star-forming dwarf galaxies occupy a different locus in the C/O vs. O/H diagram than those belonging to the inner discs of spiral galaxies, indicating their different chemical evolution histories, and that the bulk of C in the most metal-poor extragalactic HII regions should have the same origin than in halo stars. The comparison between the C/O ratios in HII regions and in stars of the Galactic thick and thin discs seems to give arguments to support the merging scenario for the origin of the Galactic thick disc. Finally, we find an apparent coupling between C and N enrichment at the usual metallicities determined for HII regions and that this coupling breaks in very low-metallicity objects.Comment: 27 pages, 12 figures, Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Small-spatial scale variations of nebular properties and the abundance discrepancy in three Galactic HII regions

    Full text link
    We present results of long-slit spectroscopy in several slit positions that cover different morphological structures of the central parts of three bright Galactic HII regions: M8, M17 and NGC7635. We study the spatial distributions of a large number of nebular parameters such as the extinction coefficient, line fluxes, physical conditions and ionic abundances at the maximum spatial resolution attainable with our instrumentation. Particularly, our goal is to study the behaviour of the abundance discrepancy factor of O^{2+}, ADF(O^{2+}), defined as the logarithmic difference of the O^{2+} abundances derived from collisionally excited and recombination lines. We find that the ADF(O^{2+}) remains fairly constant along the slit positions of M8 and M17. In the case of NGC7635, we only detect the OII recombination lines in the integrated spectrum along the whole slit, where the ADF(O^{2+}) reaches a remarkably high value of about 0.59 dex. We compare our results with previous ones obtained for the Orion Nebula. We find several evidences that suggest the presence of a candidate to Herbig-Haro object in M8.Comment: 18 pages, 9 figures. Table A1 available only in the online version. Accepted for publication in MNRAS

    Carbon and oxygen in HII regions of the Magellanic Clouds: abundance discrepancy and chemical evolution

    Full text link
    We present C and O abundances in the Magellanic Clouds derived from deep spectra of HII regions. The data have been taken with the Ultraviolet-Visual Echelle Spectrograph at the 8.2-m VLT. The sample comprises 5 HII regions in the Large Magellanic Cloud (LMC) and 4 in the Small Magellanic Cloud (SMC). We measure pure recombination lines (RLs) of CII and OII in all the objects, permitting to derive the abundance discrepancy factors (ADFs) for O^2+, as well as their O/H, C/H and C/O ratios. We compare the ADFs with those of other HII regions in different galaxies. The results suggest a possible metallicity dependence of the ADF for the low-metallicity objects, but more uncertain for high-metallicity objects. We compare nebular and B-type stellar abundances and we find that the stellar abundances agree better with the nebular ones derived from collisionally excited lines (CELs). Comparing these results with other galaxies we observe that stellar abundances seem to agree better with the nebular ones derived from CELs in low-metallicity environments and from RLs in high-metallicity environments. The C/H, O/H and C/O ratios show almost flat radial gradients, in contrast with the spiral galaxies where such gradients are negative. We explore the chemical evolution analysing C/O vs. O/H and comparing with the results of HII regions in other galaxies. The LMC seems to show a similar chemical evolution to the external zones of small spiral galaxies and the SMC behaves as a typical star-forming dwarf galaxy.Comment: Accepted for publication in MNRAS, 17 pages, 11 figures, 8 table
    • …
    corecore