710 research outputs found

    On Pythagoras' theorem for products of spectral triples

    Full text link
    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some unitality condition. We show that these inequalities are optimal, and provide non-unital counter-examples inspired by K-homology.Comment: Paper slightly shortened to match the published version; Lett. Math. Phys. 201

    Carnot-Caratheodory metric and gauge fluctuation in Noncommutative Geometry

    Full text link
    Gauge fields have a natural metric interpretation in terms of horizontal distance. The latest, also called Carnot-Caratheodory or subriemannian distance, is by definition the length of the shortest horizontal path between points, that is to say the shortest path whose tangent vector is everywhere horizontal with respect to the gauge connection. In noncommutative geometry all the metric information is encoded within the Dirac operator D. In the classical case, i.e. commutative, Connes's distance formula allows to extract from D the geodesic distance on a riemannian spin manifold. In the case of a gauge theory with a gauge field A, the geometry of the associated U(n)-vector bundle is described by the covariant Dirac operator D+A. What is the distance encoded within this operator ? It was expected that the noncommutative geometry distance d defined by a covariant Dirac operator was intimately linked to the Carnot-Caratheodory distance dh defined by A. In this paper we precise this link, showing that the equality of d and dh strongly depends on the holonomy of the connection. Quite interestingly we exhibit an elementary example, based on a 2 torus, in which the noncommutative distance has a very simple expression and simultaneously avoids the main drawbacks of the riemannian metric (no discontinuity of the derivative of the distance function at the cut-locus) and of the subriemannian one (memory of the structure of the fiber).Comment: published version with additional figures to make the proof more readable. Typos corrected in this ultimate versio

    Connes distance and optimal transport

    Get PDF
    We give a brief overview on the relation between Connes spectral distance in noncommutative geometry and the Wasserstein distance of order 1 in optimal transport. We first recall how these two distances coincide on the space of probability measures on a Riemannian manifold. Then we work out a simple example on a discrete space, showing that the spectral distance between arbitrary states does not coincide with the Wasserstein distance with cost the spectral distance between pure states

    Is life a thermal horizon ?

    Full text link
    This talk aims at questioning the vanishing of Unruh temperature for an inertial observer in Minkovski spacetime with finite lifetime, arguing that in the non eternal case the existence of a causal horizon is not linked to the non-vanishing of the acceleration. This is illustrated by a previous result, the diamonds temperature, that adapts the algebraic approach of Unruh effect to the finite case.Comment: Proceedings of the conference DICE 2006, Piombino september 200

    Initial spare parts assortment decision making for rolling stock maintenance: a structured approach

    Get PDF
    Design for maintenance and maintenance operations become increasingly important in recent years. In the capital-intensive industry, maintenance expenditures can add up to several times the initial investment. In order to be competitive in their business, owners and users of these capital goods have to take into account the total life cycle cost at investment (the lifespan of a train is about 30 years), the renewal decisions for their installations and the logistic management of the spare parts. Erroneous or unstructured initial spare parts assortment decision-making part of the logistic management can lead to undesired downtime and increases the risk of obsolete or unavailable components. Decision making is further complicated by non- existent data in the early design phase and several information management problems. Based on a case study at NedTrain (the largest maintainer of rolling stock in the Netherlands) and literature review a Decision Support Model to structure and to improve the initial spare part assortment for the rolling stock maintenance is proposed

    Information, formation and training for the maintenance operations: the lesson learned from fatal accidents

    Get PDF
    The list of possible machinery / equipment-related injuries is as long as it is worrying; they represent a non-negligible part of the total accidents in most industrial sectors, in terms of both numbers and severity, in normal conditions and during the maintenance operations. Lack of maintenance or inadequate maintenance can lead to dangerous situations, accidents and health problems; but, at the same time, maintenance itself is a high-risk activity due to special hazards resulting from the particular nature of the work. Moreover, the workers involved are more likely than other employees directly exposed to the risks, since direct contact between the worker and the machinery to be maintained cannot be substantially reduced

    Line element in quantum gravity: the examples of DSR and noncommutative geometry

    Full text link
    We question the notion of line element in some quantum spaces that are expected to play a role in quantum gravity, namely non-commutative deformations of Minkowski spaces. We recall how the implementation of the Leibniz rule forbids to see some of the infinitesimal deformed Poincare transformations as good candidates for Noether symmetries. Then we recall the more fundamental view on the line element proposed in noncommutative geometry, and re-interprete at this light some previous results on Connes' distance formula.Comment: some references added. Proceedings of the Second Workshop on Quantum Gravity and Noncommutative Geometry, Universidade Lusofona, Lisbon 22-24 September 200

    Minimal length in quantum space and integrations of the line element in Noncommutative Geometry

    Full text link
    We question the emergence of a minimal length in quantum spacetime, comparing two notions that appeared at various points in the literature: on the one side, the quantum length as the spectrum of an operator L in the Doplicher Fredenhagen Roberts (DFR) quantum spacetime, as well as in the canonical noncommutative spacetime; on the other side, Connes' spectral distance in noncommutative geometry. Although on the Euclidean space the two notions merge into the one of geodesic distance, they yield distinct results in the noncommutative framework. In particular on the Moyal plane, the quantum length is bounded above from zero while the spectral distance can take any real positive value, including infinity. We show how to solve this discrepancy by doubling the spectral triple. This leads us to introduce a modified quantum length d'_L, which coincides exactly with the spectral distance d_D on the set of states of optimal localization. On the set of eigenstates of the quantum harmonic oscillator - together with their translations - d'_L and d_D coincide asymptotically, both in the high energy and large translation limits. At small energy, we interpret the discrepancy between d'_L and d_D as two distinct ways of integrating the line element on a quantum space. This leads us to propose an equation for a geodesic on the Moyal plane.Comment: 29 pages, 2 figures. Minor corrections to match the published versio
    • …
    corecore