415 research outputs found

    Ultrasonic dynamic mechanical analysis (UDMA) for polymer characterization

    Get PDF
    Ultrasonic wave propagation has been used for the high frequency dynamic mechanical analysis of polymers with the aim to monitor the changes of viscoelastic properties in polymers associated with glass transition, crystallization, physical or chemical gelation, crosslinking, and curing reaction

    Out-Of-Plane permeability evaluation of carbon fiber preforms by ultrasonic wave propagation

    Get PDF
    Out-of-plane permeability of reinforcement preforms is of crucial importance in the infusion of large and thick composite panels, but so far, there are no standard experimental methods for its determination. In this work, an experimental set-up for the measurement of unsaturated through thickness permeability based on the ultrasonic wave propagation in pulse echo mode is presented. A single ultrasonic transducer, working both as emitter and receiver of ultrasonic waves, was used to monitor the through thickness flow front during a vacuum assisted resin infusion experiment. The set-up was tested on three thick carbon fiber preforms, obtained by stacking thermal bonding of balanced or unidirectional plies either by automated fiber placement either by hand lay-up of unidirectional plies. The ultrasonic data were used to calculate unsaturated out-of-plane permeability using Darcy's law. The permeability results were compared with saturated out-of-plane permeability, determined by a traditional gravimetric method, and validated by some analytical models. The results demonstrated the feasibility and potential of the proposed set-up for permeability measurements thanks to its noninvasive character and the one-side access

    An Overview of the Measurement of Permeability of Composite Reinforcements

    Get PDF
    Liquid composite molding (LCM) is a class of fast and cheap processes suitable for the fabrication of large parts with good geometrical and mechanical properties. One of the main steps in an LCM process is represented by the filling stage, during which a reinforcing fiber preform is impregnated with a low-viscosity resin. Darcy’s permeability is the key property for the filling stage, not usually available and depending on several factors. Permeability is also essential in computational modeling to reduce costly trial-and-error procedures during composite manufacturing. This review aims to present the most used and recent methods for permeability measurement. Several solutions, introduced to monitor resin flow within the preform and to calculate the in-plane and out-of-plane permeability, will be presented. Finally, the new trends toward reliable methods based mainly on non-invasive and possibly integrated sensors will be described

    Production and characterization of polyethylene terephthalate nanoparticles

    Get PDF
    Microplastic (MP) pollution represents one of the biggest environmental problems that is further exacerbated by the continuous degradation in the marine environment of MPs to nanoplastics (NPs). The most diffuse plastics in oceans are commodity polymers, mainly thermoplastics widely used for packaging, such as polyethylene terephthalate (PET). However, the huge interest in the chemical vector role of micro/nanoplastics, their fate and negative effects on the environment and human health is still under discussion and the research is still sparse due also to the difficulties of sampling MPs and NPs from the environment or producing NPs in laboratory. Moreover, the research on MPs and NPs pollution relies on the availability of engineered nanoparticles similar to those present in the marine environment for toxicological, transport and adsorption studies in biological tissues as well as for wastewater remediation studies. This work aims to develop an easy, fast and scalable procedure for the production of representative model nanoplastics from PET pellets. The proposed method, based on a simple and economic milling process, has been optimized considering the peculiarities of the polymer. The results demonstrated the reliability of the method for preparing particle suspensions for aquatic microplastic research, with evident advantages compared to the present literature procedures, such as low cost, the absence of liquid nitrogen, the short production time, the high yield of the process, stability, reproducibility and polydisperse size distribution of the produced water dispersed nanometric PET

    Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture

    Get PDF
    The present work deals with the development of a biodegradable superabsorbent hydrogel, based on cellulose derivatives, for the optimization of water resources in agriculture, horticulture and, more in general, for instilling a wiser and savvier approach to water consumption. The sorption capability of the proposed hydrogel was firstly assessed, with specific regard to two variables that might play a key role in the soil environment, that is, ionic strength and pH. Moreover, a preliminary evaluation of the hydrogel potential as water reservoir in agriculture was performed by using the hydrogel in experimental greenhouses, for the cultivation of tomatoes. The soil-water retention curve, in the presence of different hydrogel amounts, was also analysed. The preliminary results showed that the material allowed an efficient storage and sustained release of water to the soil and the plant roots. Although further investigations should be performed to completely characterize the interaction between the hydrogel and the soil, such findings suggest that the envisaged use of the hydrogel on a large scale might have a revolutionary impact on the optimization of water resources management in agriculture

    Experimental and numerical study of vacuum resin infusion of stiffened carbon fiber reinforced panels

    Get PDF
    Liquid resin infusion processes are becoming attractive for aeronautic applications as an alternative to conventional autoclave-based processes. They still present several challenges, which can be faced only with an accurate simulation able to optimize the process parameters and to replace traditional time-consuming trial-and-error procedures. This paper presents an experimentally validated model to simulate the resin infusion process of an aeronautical component by accounting for the anisotropic permeability of the reinforcement and the chemophysical and rheological changes in the crosslinking resin. The input parameters of the model have been experimentally determined. The experimental work has been devoted to the study of the curing kinetics and chemorheological behavior of the thermosetting epoxy matrix and to the determination of both the in-plane and out-of-plane permeability of two carbon fiber preforms using an ultrasonic-based method, recently developed by the authors. The numerical simulation of the resin infusion process involved the modeling of the resin flow through the reinforcement, the heat exchange in the part and within the mold, and the crosslinking reaction of the resin. The time necessary to fill the component has been measured by an optical fiber-based equipment and compared with the simulation results

    Agriculture 4.0: A systematic literature review on the paradigm, technologies and benefits

    Get PDF
    Demographics will increase the demand for food and reduce the availability of labour in many countries all over the world. Moreover, scarcity of natural resources, climate change and food waste these are issues that are strongly impacting the agricultural sector and undermining sus-tainability. Digitalisation is expected to be a driving force in tackling these problems that are characterising agriculture. In particular, the adoption of digital technologies to support processes in the primary sector goes by the name of Agriculture 4.0. Although the number of contributions related to these issues is constantly growing, several areas are still unexplored or not fully addressed. This paper addresses the adoption of digital technologies and investigates the appli-cation domain of these technologies, presenting a systematic review of the literature on this subject. Moreover, this research shed light on the technologies adopted and related benefits. Hence, the research has turned its attention to the description of the main pillars, such as the categorisation of its main application domains and enabling technologies. The results of the research show that the different technologies applied in the various fields of application provide benefits both in terms of efficiency (cost reduction, farm productivity) and reduced environ-mental impact and increased sustainability

    Deep control of linear oligomerization of glycerol using lanthanum catalyst on mesoporous silica gel

    Get PDF
    The valorization of glycerol (1), a waste of biodiesel production of Fatty Acid Methyl Esters (FAMEs), adopting a “green” approach, represents an important goal of sustainable chemistry. While the polymerization of 1 to hyperbranched oligomers is a well-established process, the linear analogues are difficult to obtain. In this context, we explore the reaction without the solvent of heterogeneous hybrid La(III)O-KIT-6 catalyst (2), which is based on lanthanum oxide on mesoporous silica gel, showing a superior linear selectivity compared to most of the analogous catalysts recently reported

    Sea-ice-related halogen enrichment at Law Dome, coastal East Antarctica

    Get PDF
    The Law Dome site is ideal for the evaluation of sea ice proxies due to its location near to the Antarctic coast, regular and high accumulation throughout the year, an absence of surface melting or remobilization, and minimal multiyear sea ice. We present records of bromine and iodine concentrations and their enrichment beyond seawater compositions and compare these to satellite observations of first-year sea ice area in the 90–130° E sector of the Wilkes coast. Our findings support the results of previous studies of sea ice variability from Law Dome, indicating that Wilkes coast sea ice area is currently at its lowest level since the start of the 20th century. From the Law Dome DSS1213 firn core, 26 years of monthly deposition data indicate that the period of peak bromine enrichment is during austral spring–summer, from November to February. Results from a traverse along the lee (western) side of Law Dome show low levels of sodium and bromine deposition, with the greatest fluxes in the vicinity of the Law Dome summit. Finally, multidecadal variability in iodine enrichment appears well correlated to bromine enrichment, suggesting a common source of variability that may be related to the Interdecadal Pacific Oscillation (IPO)
    • …
    corecore