23,143 research outputs found

    Thermodynamics of Higher Spin Black Holes in AdS3_3

    Get PDF
    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,R)\times SL(N,R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W_N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.Comment: 30 pages, PDFLaTeX; v2: typos corrected, explicit expressions for the free energy adde

    Twisted Open Strings from Closed Strings: The WZW Orientation Orbifolds

    Full text link
    Including {\it world-sheet orientation-reversing automorphisms} h^σ∈H−\hat{h}_{\sigma} \in H_- in the orbifold program, we construct the operator algebras and twisted KZ systems of the general WZW {\it orientation orbifold} Ag(H−)/H−A_g (H_-) /H_-. We find that the orientation-orbifold sectors corresponding to each h^σ∈H−\hat{h}_{\sigma} \in H_- are {\it twisted open} WZW strings, whose properties are quite distinct from conventional open-string orientifold sectors. As simple illustrations, we also discuss the classical (high-level) limit of our construction and free-boson examples on abelian gg.Comment: 65 pages, typos correcte

    Direct Mediation of Meta-Stable Supersymmetry Breaking

    Get PDF
    The supersymmetric SU(Nc) Yang-Mills theory coupled to Nf matter fields in the fundamental representation has meta-stable vacua with broken supersymmetry when Nc < Nf < 3/2 Nc. By gauging the flavor symmetry, this model can be coupled directly to the standard model. We show that it is possible to make a slight deformation to the model so that gaugino masses are generated and the Landau pole problem can be avoided. The deformed model has simple realizations on intersecting branes in string theory, where various features of the meta-stable vacua are encoded geometrically as brane configurations.Comment: 22 pages, 4 figures, a reference added, version to appear in PR

    Inversion symmetry in the spin-Peierls compound NaV2O5

    Get PDF
    At room-temperature NaV2O5 was found to have the centrosymmetric space group Pmmn. This space group implies the presence of only one kind of V site in contrast with previous reports of the non-centrosymmetric counterpart P21mn. This indicates a non-integer valence state of vanadium. Furthermore, this symmetry has consequences for the interpretation of the transition at 34 K, which was ascribed to a spin-Peierls transition of one dimensional chains of V4+.Comment: Revtex, 3 pages, 2 postscript pictures embedded in the text. Corrected a mistake in one pictur

    Sum rules for correlation functions of ionic mixtures in arbitrary dimension d≄2d\geq 2

    Full text link
    The correlations in classical multi-component ionic mixtures with spatial dimension d≄2d\geq 2 are studied by using a restricted grand-canonical ensemble and the associated hierarchy equations for the correlation functions. Sum rules for the first few moments of the two-particle correlation function are derived and their dependence on dd is established. By varying dd continuously near d=2d=2 it is shown how the sum rules for the two-dimensional mixture are related to those for mixtures at higher dd.Comment: 19 page

    Organic Single-Crystal Field-Effect Transistors

    Full text link
    We present an overview of recent studies of the charge transport in the field effect transistors on the surface of single crystals of organic low-molecular-weight materials. We first discuss in detail the technological progress that has made these investigations possible. Particular attention is devoted to the growth and characterization of single crystals of organic materials and to different techniques that have been developed for device fabrication. We then concentrate on the measurements of the electrical characteristics. In most cases, these characteristics are highly reproducible and demonstrate the quality of the single crystal transistors. Particularly noticeable are the small sub-threshold slope, the non-monotonic temperature dependence of the mobility, and its weak dependence on the gate voltage. In the best rubrene transistors, room-temperature values of Ό\mu as high as 15 cm2^2/Vs have been observed. This represents an order-of-magnitude increase with respect to the highest mobility previously reported for organic thin film transistors. In addition, the highest-quality single-crystal devices exhibit a significant anisotropy of the conduction properties with respect to the crystallographic direction. These observations indicate that the field effect transistors fabricated on single crystals are suitable for the study of the \textit{intrinsic} electronic properties of organic molecular semiconductors. We conclude by indicating some directions in which near-future work should focus to progress further in this rapidly evolving area of research.Comment: Review article, to appear in special issue of Phys. Stat. Sol. on organic semiconductor

    A gobal fit to the anomalous magnetic moment, Higgs limit and b->s gamma in the constrained MSSM

    Full text link
    New data on the anomalous magnetic moment of the muon together with the b->s gamma decay rate and Higgs limits are considered within the supergravity inspired constrained minimal supersymmetric model. We perform a global statistical chi2 analysis of these data and show that the allowed region of parameter space is bounded from below by the Higgs limit, which depends on the trilinear coupling and from above by the anomalous magnetic moment.Comment: 3 pages, To appear in Proc. of SUSY01, Dubna (Russia

    In-flight measurements of energetic radiation from lightning and thunderclouds

    Full text link
    In the certification procedure aircraft builders carry out so-called icing tests flights, where the zero degree Celsius altitude is deliberately sought and crossed in or under thunderstorms. Airbus also used these flights to test ILDAS, a system aimed to determine lightning severity and attachment points during flight from high speed data on the electric and magnetic field at the aircraft surface. We used this unique opportunity to enhance the ILDAS systems with two x-ray detectors coupled to high speed data recorders in an attempt to determine the x-rays produced by lightning in-situ, with synchronous determination of the lightning current distribution and electric field at the aircraft. Such data are of interest in a study of lightning physics. In addition, the data may provide clues to the x-ray dose for personnel and equipment during flights. The icing campaign ran in April 2014; in six flights we collected data of 61 lightning strikes on an Airbus test aircraft. In this communication we briefly describe ILDAS and present selected results on three strikes, two aircraft initiated and one intercepted. Most of the x-rays have been observed synchronous with initiating negative leader steps, and as bursts immediately preceding the current of the recoil process. Those processes include the return stroke. The bursts last one to four micro-second and attain x-ray energies up to 10 MeV. Intensity and spectral distribution of the x-rays and the association with the current distribution are discussed. ILDAS also continuously records x-rays at low resolution in time and amplitude.Comment: 28 pages, 9 figure

    Black Hole Meiosis

    Full text link
    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, arXiv:0810.4301. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the `chromosomes' of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as `crossing-over in the meiosis of a D-particle'. Our results improve on hep-th/0702012, provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into `generic' and `special' states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.Comment: 46 pages, 8 figures. v2: minor changes. v3: minor changes and reference adde
    • 

    corecore