402,814 research outputs found

    Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice

    Get PDF
    We use a combination of analytical and numerical techniques to study the phase diagram of the frustrated Heisenberg model on the bilayer honeycomb lattice. Using the Schwinger boson description of the spin operators followed by a mean field decoupling, the magnetic phase diagram is studied as a function of the frustration coupling J2J_{2} and the interlayer coupling JJ_{\bot}. The presence of both magnetically ordered and disordered phases is investigated by means of the evaluation of ground-state energy, spin gap, local magnetization and spin-spin correlations. We observe a phase with a spin gap and short range N\'eel correlations that survives for non-zero next-nearest-neighbor interaction and interlayer coupling. Furthermore, we detect signatures of a reentrant behavior in the melting of N\'eel phase and symmetry restoring when the system undergoes a transition from an on-layer nematic valence bond crystal phase to an interlayer valence bond crystal phase. We complement our work with exact diagonalization on small clusters and dimer-series expansion calculations, together with a linear spin wave approach to study the phase diagram as a function of the spin SS, the frustration and the interlayer couplings.Comment: 10 pages, 9 figure

    Riemannian Geometry of Noncommutative Surfaces

    Get PDF
    A Riemannian geometry of noncommutative n-dimensional surfaces is developed as a first step towards the construction of a consistent noncommutative gravitational theory. Historically, as well, Riemannian geometry was recognized to be the underlying structure of Einstein's theory of general relativity and led to further developments of the latter. The notions of metric and connections on such noncommutative surfaces are introduced and it is shown that the connections are metric-compatible, giving rise to the corresponding Riemann curvature. The latter also satisfies the noncommutative analogue of the first and second Bianchi identities. As examples, noncommutative analogues of the sphere, torus and hyperboloid are studied in detail. The problem of covariance under appropriately defined general coordinate transformations is also discussed and commented on as compared with other treatments.Comment: 28 pages, some clarifications, examples and references added, version to appear in J. Math. Phy
    corecore