128 research outputs found

    A new class of short distance universal amplitude ratios

    Full text link
    We propose a new class of universal amplitude ratios which involve the first terms of the short distance expansion of the correlators of a statistical model in the vicinity of a critical point. We will describe the critical system with a conformal field theory (UV fixed point) perturbed by an appropriate relevant operator. In two dimensions the exact knowledge of the UV fixed point allows for accurate predictions of the ratios and in many nontrivial integrable perturbations they can even be evaluated exactly. In three dimensional O(N) scalar systems feasible extensions of some existing results should allow to obtain perturbative expansions for the ratios. By construction these universal ratios are a perfect tool to explore the short distance properties of the underlying quantum field theory even in regimes where the correlation length and one point functions are not accessible in experiments or simulations.Comment: 8 pages, revised version, references adde

    Critical adsorption on curved objects

    Get PDF
    A systematic fieldtheoretic description of critical adsorption on curved objects such as spherical or rodlike colloidal particles immersed in a fluid near criticality is presented. The temperature dependence of the corresponding order parameter profiles and of the excess adsorption are calculated explicitly. Critical adsorption on elongated rods is substantially more pronounced than on spherical particles. It turns out that, within the context of critical phenomena in confined geometries, critical adsorption on a microscopically thin `needle' represents a distinct universality class of its own. Under favorable conditions the results are relevant for the flocculation of colloidal particles.Comment: 52 pages, 10 figure

    Dynamic structure factor of the Ising model with purely relaxational dynamics

    Get PDF
    We compute the dynamic structure factor for the Ising model with a purely relaxational dynamics (model A). We perform a perturbative calculation in the ϵ\epsilon expansion, at two loops in the high-temperature phase and at one loop in the temperature magnetic-field plane, and a Monte Carlo simulation in the high-temperature phase. We find that the dynamic structure factor is very well approximated by its mean-field Gaussian form up to moderately large values of the frequency ω\omega and momentum kk. In the region we can investigate, kξ5k\xi \lesssim 5, ωτ10\omega \tau \lesssim 10, where ξ\xi is the correlation length and τ\tau the zero-momentum autocorrelation time, deviations are at most of a few percent.Comment: 21 pages, 3 figure

    Integrable field theory and critical phenomena. The Ising model in a magnetic field

    Full text link
    The two-dimensional Ising model is the simplest model of statistical mechanics exhibiting a second order phase transition. While in absence of magnetic field it is known to be solvable on the lattice since Onsager's work of the forties, exact results for the magnetic case have been missing until the late eighties, when A.Zamolodchikov solved the model in a field at the critical temperature, directly in the scaling limit, within the framework of integrable quantum field theory. In this article we review this field theoretical approach to the Ising universality class, with particular attention to the results obtained starting from Zamolodchikov's scattering solution and to their comparison with the numerical estimates on the lattice. The topics discussed include scattering theory, form factors, correlation functions, universal amplitude ratios and perturbations around integrable directions. Although we restrict our discussion to the Ising model, the emphasis is on the general methods of integrable quantum field theory which can be used in the study of all universality classes of critical behaviour in two dimensions.Comment: 42 pages; invited review article for J. Phys.

    Critical behavior of the three-dimensional XY universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional XY universality class. We find alpha=-0.0146(8), gamma=1.3177(5), nu=0.67155(27), eta=0.0380(4), beta=0.3485(2), and delta=4.780(2). We observe a discrepancy with the most recent experimental estimate of alpha; this discrepancy calls for further theoretical and experimental investigations. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods, and high-temperature expansions. Two improved models (with suppressed leading scaling corrections) are selected by Monte Carlo computation. The critical exponents are computed from high-temperature expansions specialized to these improved models. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine the specific-heat amplitude ratio.Comment: 61 pages, 3 figures, RevTe

    Copernicus Global Land Service: Land Cover 100m: version 3 Globe 2015-2019: Validation Report

    Get PDF
    This Validation Report describes in detail the quality of the satellite-based 100m Land Cover product of the global component of the Copernicus Land Service. It includes assessments of yearly global land cover layers (2015-2019), assessment of change as well as comparison with the previous version using an independent validation dataset. The related Product User Manual is the starting point for the reader and summarizes all aspects of the product (algorithm, quality, contents, format, etc)

    Density Fluctuations in an Electrolyte from Generalized Debye-Hueckel Theory

    Full text link
    Near-critical thermodynamics in the hard-sphere (1,1) electrolyte is well described, at a classical level, by Debye-Hueckel (DH) theory with (+,-) ion pairing and dipolar-pair-ionic-fluid coupling. But DH-based theories do not address density fluctuations. Here density correlations are obtained by functional differentiation of DH theory generalized to {\it non}-uniform densities of various species. The correlation length ξ\xi diverges universally at low density ρ\rho as (Tρ)1/4(T\rho)^{-1/4} (correcting GMSA theory). When ρ=ρc\rho=\rho_c one has ξξ0+/t1/2\xi\approx\xi_0^+/t^{1/2} as t(TTc)/Tc0+t\equiv(T-T_c)/T_c\to 0+ where the amplitudes ξ0+\xi_0^+ compare informatively with experimental data.Comment: 5 pages, REVTeX, 1 ps figure included with epsf. Minor changes, references added. Accepted for publication in Phys. Rev. Let

    Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems

    Full text link
    High-temperature series are computed for a generalized 3d3d Ising model with arbitrary potential. Two specific ``improved'' potentials (suppressing leading scaling corrections) are selected by Monte Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved potentials, achieving high accuracy; our best estimates are: γ=1.2371(4)\gamma=1.2371(4), ν=0.63002(23)\nu=0.63002(23), α=0.1099(7)\alpha=0.1099(7), η=0.0364(4)\eta=0.0364(4), β=0.32648(18)\beta=0.32648(18). By the same technique, the coefficients of the small-field expansion for the effective potential (Helmholtz free energy) are computed. These results are applied to the construction of parametric representations of the critical equation of state. A systematic approximation scheme, based on a global stationarity condition, is introduced (the lowest-order approximation reproduces the linear parametric model). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison with other theoretical and experimental determinations of universal quantities is presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch enabled us to improve the determination of the critical exponents and of the equation of state. The discussion of several topics was improved and the bibliography was update

    25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple cubic lattice

    Full text link
    25th-order high-temperature series are computed for a general nearest-neighbor three-dimensional Ising model with arbitrary potential on the simple cubic lattice. In particular, we consider three improved potentials characterized by suppressed leading scaling corrections. Critical exponents are extracted from high-temperature series specialized to improved potentials, obtaining γ=1.2373(2)\gamma=1.2373(2), ν=0.63012(16)\nu=0.63012(16), α=0.1096(5)\alpha=0.1096(5), η=0.03639(15)\eta=0.03639(15), β=0.32653(10)\beta=0.32653(10), δ=4.7893(8)\delta=4.7893(8). Moreover, biased analyses of the 25th-order series of the standard Ising model provide the estimate Δ=0.52(3)\Delta=0.52(3) for the exponent associated with the leading scaling corrections. By the same technique, we study the small-magnetization expansion of the Helmholtz free energy. The results are then applied to the construction of parametric representations of the critical equation of state, using a systematic approach based on a global stationarity condition. Accurate estimates of several universal amplitude ratios are also presented.Comment: 40 pages, 15 figure

    Equilibrium random-field Ising critical scattering in the antiferromagnet Fe(0.93)Zn(0.07)F2

    Full text link
    It has long been believed that equilibrium random-field Ising model (RFIM) critical scattering studies are not feasible in dilute antiferromagnets close to and below Tc(H) because of severe non-equilibrium effects. The high magnetic concentration Ising antiferromagnet Fe(0.93)Zn(0.07)F2, however, does provide equilibrium behavior. We have employed scaling techniques to extract the universal equilibrium scattering line shape, critical exponents nu = 0.87 +- 0.07 and eta = 0.20 +- 0.05, and amplitude ratios of this RFIM system.Comment: 4 pages, 1 figure, minor revision
    corecore