146 research outputs found

    Scalable low-latency optical phase sensor array

    Get PDF
    Optical phase measurement is critical for many applications, and traditional approaches often suffer from mechanical instability, temporal latency, and computational complexity. In this paper, we describe compact phase sensor arrays based on integrated photonics, which enable accurate and scalable reference-free phase sensing in a few measurement steps. This is achieved by connecting multiple two-port phase sensors into a graph to measure relative phases between neighboring and distant spatial locations. We propose an efficient post-processing algorithm, as well as circuit design rules to reduce random and biased error accumulations. We demonstrate the effectiveness of our system in both simulations and experiments with photonics integrated circuits. The proposed system measures the optical phase directly without the need for external references or spatial light modulators, thus providing significant benefits for applications including microscope imaging and optical phased arrays

    Life cycle cost, as a tool for decision making on concrete infrastructures

    Get PDF
    The use of Life Cycle Cost (LCC) tools in civil engineering is increasing, due to the need of infrastructure owners and operators to guarantee their assets maximum performance with an optimized budget. By considering these tools it will be possible to manage assets along their lifetime in a more sustainable and efficient way. Due to this reason, it was recently constituted a Task Group on fib to deal with existing LCC tools for concrete infrastructures. This paper gives an introduction to these tools, with a special emphasis to the added-value of LCC, and to the main contents of the fib TG 8.4 state-of-art technical report. This covers a description of existing LCC standards and guidelines, their applicability, the definition of different cost elements, the incorporation of risk in the analysis, etc.(undefined)info:eu-repo/semantics/publishedVersio

    Power monitoring in a feedforward photonic network using two output detectors

    Get PDF
    Programmable feedforward photonic meshes of Mach-Zehnder interferometers are computational optical circuits that have many classical and quantum computing applications including machine learning, sensing, and telecommunications. Such devices can form the basis of energy-efficient photonic neural networks, which solve complex tasks using photonics-accelerated matrix multiplication on a chip, and which may require calibration and training mechanisms. Such training can benefit from internal optical power monitoring and physical gradient measurement for optimizing controllable phase shifts to maximize some task merit function. Here, we design and experimentally verify a new architecture capable of power monitoring any waveguide segment in a feedforward photonic circuit. Our scheme is experimentally realized by modulating phase shifters in a 6 x 6 triangular mesh silicon photonic chip, which can non-invasively (i.e., without any internal "power taps ") resolve optical powers in a 3 x 3 triangular mesh based on response measurements in only two output detectors. We measure roughly 3% average error over 1000 trials in the presence of systematic manufacturing and environmental drift errors and verify scalability of our procedure to more modes via simulation

    Experimental evaluation of digitally verifiable photonic computing for blockchain and cryptocurrency

    Get PDF
    As blockchain technology and cryptocurrency become increasingly mainstream, photonic computing has emerged as an efficient hardware platform that reduces ever-increasing energy costs required to verify transactions in decentralized cryptonetworks. To reduce sensitivity of these verifications to photonic hardware error, we propose and experimentally demonstrate a cryptographic scheme, LightHash, that implements robust, low-bit precision matrix multiplication in programmable silicon photonic networks. We demonstrate an error mitigation scheme to reduce error by averaging computation across circuits, and simulate energy-efficiency-error trade-offs for large circuit sizes. We conclude that our error-resistant and efficient hardware solution can potentially generate a new market for decentralized photonic blockchain

    Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in northeast Greenland

    Get PDF
    The seasonal response to surface melting of the Northeast Greenland Ice Stream outlets, Zachariae and 79N, is investigated using new highly temporally resolved surface velocity maps for 2016 combined with numerical modeling. The seasonal speedup at 79N of 0.15 km/yr is suggested to be driven by a decrease in effective basal pressure induced by surface melting, whereas for Zachariae its 0.11 km/yr seasonal speedup correlates equally well with the breakup of its large ice mélange. We investigate the influence 76 km long floating tongue at 79N, finding it provides little resistance and that most of it could be lost without impacting the dynamics of the area. Furthermore, we show that reducing the slipperiness along the tongue-wall interfaces produces a velocity change spatially inconsistent with the observed seasonal speedup. Finally, we find that subglacial sticky spots such as bedrock bumps play a negligible role in the large-scale response to a seasonally enhanced basal slipperiness of the region

    Basal conditions at Engabreen, Norway, inferred from surface measurements and inverse modelling

    Get PDF
    Engabreen is an outlet glacier of the Svartisen Ice Cap located in Northern Norway. It is a unique glacier due to the Svartisen Subglacial Laboratory which allows direct access to the glacier bed. In this study, we combine both sub- and supraglacial observations with ice-flow modelling in order to investigate conditions at the bed of Engabreen both spatially and temporally. We use the full-Stokes model Elmer/Ice and satellite-based surface-velocity maps from 2010 and 2014 to infer patterns of basal friction. Direct measurements of basal sliding and deformation of lower layers of the ice are used to adjust the ice viscosity and provide essential input to the setup of our model and influence the interpretation of the results. We find a clear seasonal cycle in the subglacial conditions at the higher elevation region of the study area and discuss this in relation to the subglacial hydrological system. Our results also reveal an area with an overdeepening where basal friction is significantly lower than elsewhere on the glacier all year round. We attribute this to either water pooling at the base, or saturated sediments and increased strain heating at this location which softens the ice further
    • …
    corecore