1,188 research outputs found

    Particle Learning for General Mixtures

    Get PDF
    This paper develops particle learning (PL) methods for the estimation of general mixture models. The approach is distinguished from alternative particle filtering methods in two major ways. First, each iteration begins by resampling particles according to posterior predictive probability, leading to a more efficient set for propagation. Second, each particle tracks only the "essential state vector" thus leading to reduced dimensional inference. In addition, we describe how the approach will apply to more general mixture models of current interest in the literature; it is hoped that this will inspire a greater number of researchers to adopt sequential Monte Carlo methods for fitting their sophisticated mixture based models. Finally, we show that PL leads to straight forward tools for marginal likelihood calculation and posterior cluster allocation.Business Administratio

    Equilibrium behaviour of two cavity-confined polymers: Effects of polymer width and system asymmetries

    Full text link
    Experiments using nanofluidic devices have proven effective in characterizing the physical properties of polymers confined to small cavities. Two recent studies using such methods examined the organization and dynamics of two DNA molecules in box-like cavities with strong confinement in one direction and with square and elliptical cross sections in the lateral plane. Motivated by these experiments, we employ Monte Carlo and Brownian dynamics simulations to study the physical behaviour of two polymers confined to small cavities with shapes comparable to those used in the experiments. We quantify the effects of varying the following polymer properties and confinement dimensions on the organization and dynamics of the polymers: the polymer width, the polymer contour length ratio, the cavity cross-sectional area, and the degree of cavity elongation for cavities with rectangular and elliptical cross sections. We find that the tendency for polymers to segregate is enhanced by increasing polymer width. For sufficiently small cavities, increasing cavity elongation promotes segregation and localization of identical polymers to opposite sides of the cavity along its long axis. A free-energy barrier controls the rate of polymers swapping positions, and the observed dynamics are roughly in accord with predictions of a simple theoretical model. Increasing the contour length difference between polymers significantly affects their organization in the cavity. In the case of a large linear polymer co-trapped with a small ring polymer in an elliptical cavity, the small polymer tends to lie near the lateral confining walls, and especially at the cavity poles for highly elongated ellipses.Comment: 19 pages, 15 figures, 4 pages of supplemental inf

    Who needs a stapling device for haemorrhoidectomy, if one has the radiofrequency device?

    Get PDF
    Peer reviewedPublisher PD

    The TIGRE gamma-ray telescope

    Get PDF
    TIGRE is an advanced telescope for gamma-ray astronomy with a few arcmin resolution. From 0.3 to 10 MeV it is a Compton telescope. Above 1 MeV, its multi-layers of double sided silicon strip detectors allow for Compton recoil electron tracking and the unique determination for incident photon direction. From 10 to 100 MeV the tracking feature is utilized for gamma-ray pair event reconstruction. Here we present TIGRE energy resolutions, background simulations and the development of the electronics readout system

    Freezing by Monte Carlo Phase-Switch

    Full text link
    We describe a Monte Carlo procedure which allows sampling of the disjoint configuration spaces associated with crystalline and fluid phases, within a single simulation. The method utilises biased sampling techniques to enhance the probabilities of gateway states (in each phase) which are such that a global switch (to the other phase) can be implemented. Equilibrium freezing-point parameters can be determined directly; statistical uncertainties prescribed transparently; and finite-size effects quantified systematically. The method is potentially quite general; we apply it to the freezing of hard spheres.Comment: 5 pages, 2 figure

    Towards Better Integrators for Dissipative Particle Dynamics Simulations

    Get PDF
    Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the compressibility and the diffusion coefficient. We assess the quality of these integration schemes, including variants based on a recently suggested self-consistent approach, and examine their relative performance. Implications of integrator-induced effects are discussed.Comment: 4 pages, 3 figures, 2 tables, accepted for publication in Phys. Rev. E (Rapid Communication), tentative publication issue: 01 Dec 200

    Designing Chatbots for Crises: A Case Study Contrasting Potential and Reality

    No full text
    Chatbots are becoming ubiquitous technologies, and their popularity and adoption are rapidly spreading. The potential of chatbots in engaging people with digital services is fully recognised. However, the reputation of this technology with regards to usefulness and real impact remains rather questionable. Studies that evaluate how people perceive and utilise chatbots are generally lacking. During the last Kenyan elections, we deployed a chatbot on Facebook Messenger to help people submit reports of violence and misconduct experienced in the polling stations. Even though the chatbot was visited by more than 3,000 times, there was a clear mismatch between the users’ perception of the technology and its design. In this paper, we analyse the user interactions and content generated through this application and discuss the challenges and directions for designing more effective chatbots

    Random Resonators and Prelocalized Modes in Disordered Dielectric Films

    Full text link
    Areal density of disorder-induced resonators with a high quality factor, Q1Q\gg 1, in a film with fluctuating refraction index is calculated theoretically. We demonstrate that for a given kl>1kl>1, where kk is the light wave vector, and ll is the transport mean free path, when {\em on average} the light propagation is diffusive, the likelihood for finding a random resonator increases dramatically with increasing the correlation radius of the disorder. Parameters of {\em most probable} resonators as functions of QQ and klkl are found.Comment: 6 pages including 2 figure

    False positive acetaminophen concentrations in patients with liver injury

    Get PDF
    AbstractBackgroundAcetaminophen toxicity is the most common form of acute liver failure in the U.S. After acetaminophen overdoses, quantitation of plasma acetaminophen can aid in predicting severity of injury. However, recent case reports have suggested that acetaminophen concentrations may be falsely increased in the presence of hyperbilirubinemia.MethodsWe tested sera obtained from 43 patients with acute liver failure, mostly unrelated to acetaminophen, utilizing 6 different acetaminophen quantitation systems to determine the significance of this effect. In 36 of the 43 samples with bilirubin concentrations ranging from 1.0–61.5 mg/dl no acetaminophen was detectable by gas chromatography-mass spectroscopy. These 36 samples were then utilized to test the performance characteristics of 2 immunoassay and 4 enzymatic–colorimetric methods.ResultsThree of four colorimetric methods demonstrated ‘detectable’ values for acetaminophen in from 4 to 27 of the 36 negative samples, low concentration positive values being observed when serum bilirubin concentrations exceeded 10 mg/dl. By contrast, the 2 immunoassay methods (EMIT, FPIA) were virtually unaffected. The false positive values obtained were, in general, proportional to the quantity of bilirubin in the sample. However, prepared samples of normal human serum with added bilirubin showed a dose–response curve for only one of the 4 colorimetric assays.ConclusionsFalse positive acetaminophen tests may result when enzymatic–colorimetric assays are used, most commonly with bilirubin concentrations >10 mg/dl, leading to potential clinical errors in this setting. Bilirubin (or possibly other substances in acute liver failure sera) appears to affect the reliable measurement of acetaminophen, particularly with enzymatic–colorimetric assays

    Enhanced stability of layered phases in parallel hard-spherocylinders due to the addition of hard spheres

    Full text link
    There is increasing evidence that entropy can induce microphase separation in binary fluid mixtures interacting through hard particle potentials. One such phase consists of alternating two dimensional liquid-like layers of rods and spheres. We study the transition from a uniform miscible state to this ordered state using computer simulations and compare results to experiments and theory. We conclude that (1) there is stable entropy driven microphase separation in mixtures of parallel rods and spheres, (2) adding spheres smaller then the rod length decreases the total volume fraction needed for the formation of a layered phase, therefore small spheres effectively stabilize the layered phase; the opposite is true for large spheres and (3) the degree of this stabilization increases with increasing rod length.Comment: 11 pages, 9 figures. Submitted to Phys. Rev. E. See related website http://www.elsie.brandeis.ed
    corecore