444 research outputs found

    Transparent conducting oxides for active hybrid metamaterial devices

    No full text
    We present here a study of the combined nonlinear response of plasmonic antennaā€”transparent conducting oxide hybrids for activation of metamaterial devices. Nanoantenna layers consisting of randomly positioned gold nanodisk dimers are fabricated using hole-mask lithography. The nanoantenna layers are covered with a 20 nm thin layer of transparent conducting oxide (TCO). We investigate the response of atomic layer deposited aluminum-doped zinc oxide (AZO) next to indiumā€“tin oxide (ITO) produced using sputter coating. We show that our results are in agreement with the hypothesis of fast electron-mediated cooling, facilitated by the Ohmic interface between the gold nanodisks and the TCO substrate, which appears a universal mechanism for providing a new hybrid functionality to active metamaterial device

    Spatial Modulation Microscopy for Real-Time Imaging of Plasmonic Nanoparticles and Cells

    Full text link
    Spatial modulation microscopy is a technique originally developed for quantitative spectroscopy of individual nano-objects. Here, a parallel implementation of the spatial modulation microscopy technique is demonstrated based on a line detector capable of demodulation at kHz frequencies. The capabilities of the imaging system are shown using an array of plasmonic nanoantennas and dendritic cells incubated with gold nanoparticles.Comment: 3 pages, 4 figure

    Concentrating or scattering management in agricultural landscapes:Examining the effectiveness and efficiency of conservation measures

    Get PDF
    A key issue in conservation is where and how much management should be implemented to obtain optimal biodiversity benefits. Cost-effective conservation requires knowledge on whether biodiversity benefits are higher when management is concentrated in a few core areas or scattered across the landscape, and how these effects vary between species. To address these questions, we examined species-specific behavioural responses of over-wintering farmland birds to enhanced seed availability. In a two-year experiment we first examined the relationship between landscape-scale seed availability and farmland bird density. Then we investigated the relative resource delivery (difference in bird densities between landscapes with and without additional management) and the efficiency (number of individuals supported per unit management) of conservation actions, both at the landscape-scale (ca 100 ha) and at the scale of the conservation measures (3.6 ha). The conservation actions were targeted towards ten seed-eating farmland bird species, but we also considered the responses of seven non-targeted and more generalist seed-eating species, seven species that are less dependent on seeds and three species of birds of prey. We found a positive relationship between bird density and landscape-scale seed availability for eleven species and, for four of these species, the slope of this relationship changed before and after a threshold seed density. For two seed-eating specialists, the number of individuals using conservation patches declined with landscape-scale seed availability. In addition, we found that the relative resource delivery declined with landscape scale seed availability for three seed-eating specialists and was independent of landscape-scale seed availability in four other species. Our results suggest that farmland specialists may benefit most from winter food additions if conservation actions result in high landscape-scale seed availability. This may be achieved by concentrating conservation measures or by establishing measures in areas with high baseline seed availability. By contrast, species that can utilize a wider range of habitats and resources may benefit more from scattering measures across larger areas. Therefore, optimal management for the full range of farmland birds in wintertime may require a combination of core areas with concentrated management and more widely distributed smaller patches of conservation measures.</p

    Giant optical birefringence of semiconductor nanowire metamaterials

    Get PDF
    Semiconductor nanowires exhibit large polarization anisotropy for the absorption and emission of light, making them ideal building blocks for novel photonic metamaterials. Here, we demonstrate that a high density of aligned nanowires exhibits giant optical birefringence, a collective phenomenon observable uniquely for collections of wires. The nanowire material was grown on gallium phosphide (GaP) (111) in the form of vertically standing GaP nanowires. We obtain the largest optical birefringence to date, with a difference between the in-plane and out-of-plane refractive indices of 0.80 and a relative birefringence of 43%. These values exceed by a factor of 75 the natural birefringence of quartz and a by more than a factor of two the highest values reported so far in other artificial materials. By exploiting the specific crystallographic growth directions of the nanowires on the substrate, we further demonstrate full control over the orientation of the optical birefringence effect in the metamaterial.Comment: 10 pages, 4 figure

    A Paraconsistent Higher Order Logic

    Full text link
    Classical logic predicts that everything (thus nothing useful at all) follows from inconsistency. A paraconsistent logic is a logic where an inconsistency does not lead to such an explosion, and since in practice consistency is difficult to achieve there are many potential applications of paraconsistent logics in knowledge-based systems, logical semantics of natural language, etc. Higher order logics have the advantages of being expressive and with several automated theorem provers available. Also the type system can be helpful. We present a concise description of a paraconsistent higher order logic with countable infinite indeterminacy, where each basic formula can get its own indeterminate truth value (or as we prefer: truth code). The meaning of the logical operators is new and rather different from traditional many-valued logics as well as from logics based on bilattices. The adequacy of the logic is examined by a case study in the domain of medicine. Thus we try to build a bridge between the HOL and MVL communities. A sequent calculus is proposed based on recent work by Muskens.Comment: Originally in the proceedings of PCL 2002, editors Hendrik Decker, Joergen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/). Correcte

    Clinical experience with a novel subcutaneous implantable defibrillator system in a single center

    Get PDF
    Background: Implantable cardioverter-defibrillators (ICDs) reduce mortality in both primary and secondary prevention, but are associated with substantial short- and long-term morbidity. A totally subcutaneous ICD (S-ICD) system has been developed. We report the initial clinical experience of the first 31 patients implanted at our hospital. Methods: All patients had an ICD indication according to the ACC/AHA/ESC guidelines. The first 11 patients were part of the reported CE trial. The implantation was performed without fluoroscopy. The device was implanted subcutaneously in the anterior axillary line, with a parasternal lead tunneled from the xiphoid to the manubrial-sternal junction. Ventricular fibrillation (VF) was induced to assess detection accuracy and defibrillation efficacy using 65 J shocks. Results: Post-implant, 52 sustained episodes of VF were induced. Sensitivity was 100% and induced conversion efficacy was 100% (with standard polarity in 29 patients). Mean time to therapy was 13.9 Ā± 2.5 s (range 11-21.6 s). Late procedure-related complications were observed in 2 of the first 11 implantations (lead migration). During follow-up, spontaneous ventricular arrhythmias occurred in four patients, with accurate detection of all episodes. Inappropriate therapy was observed in five patients. Recurrences were prevented with reprogramming. Conclusions: The S-ICD system can be implanted without the use of fluoroscopy by using anatomical landmarks only. Episodes of VF were accurately detected using subcutaneous signals, and all induced and clinical episodes were successfully converted. The S-ICD system is a viable alternative to conventional ICD systems for selected patients

    Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films: part I: absorption

    Get PDF
    In this and the following paper (parts I and II, respectively), we systematically study the interactions between surface plasmons of metal nanoparticles (NPs) with excitons in thin-films of organic media. In an effort to exclusively probe near-field interactions, we utilize spherical Ag NPs in a size-regime where far-field light scattering is negligibly small compared to absorption. In part I, we discuss the effect of the presence of these Ag NPs on the absorption of the embedding medium by means of experiment, numerical simulations, and analytical calculations, all shown to be in good agreement. We observe absorption enhancement in the embedding medium due to the Ag NPs with a strong dependence on the medium permittivity, the spectral position relative to the surface plasmon resonance frequency, and the thickness of the organic layer. By introducing a low index spacer layer between the NPs and the organic medium, this absorption enhancement is experimentally confirmed to be a near field effect In part II, we probe the impact of the Ag NPs on the emission of organic molecules by time-resolved and steady-state photoluminescence measurements

    Angular redistribution of near-infrared emission from quantum dots in 3D photonic crystals

    Get PDF
    We study the angle-resolved spontaneous emission of near-infrared light sources in 3D photonic crystals over a wavelength range from 1200 to 1550 nm. To this end PbSe quantum dots are used as light sources inside titania inverse opal photonic crystals. Strong deviations from the Lambertian emission profile are observed. An attenuation of 60 % is observed in the angle dependent radiant flux emitted from the samples due to photonic stop bands. At angles that correspond to the edges of the stop band the emitted flux is increased by up to 34 %. This increase is explained by the redistribution of Bragg-diffracted light over the available escape angles. The results are quantitatively explained by an expanded escape-function model. This model is based on diffusion theory and adapted to photonic crystals using band structure calculations. Our results are the first angular redistributions and escape functions measured at near-infrared, including telecom, wavelengths. In addition, this is the first time for this model to be applied to describe emission from samples that are optically thick for the excitation light and relatively thin for the photoluminesence light.Comment: 24 pages, 8 figures (current format = single column, double spaced
    • ā€¦
    corecore