29,393 research outputs found
Coulomb-Modified Fano Resonance in a One-Lead Quantum Dot
We investigate a tunable Fano interferometer consisting of a quantum dot
coupled via tunneling to a one-dimensional channel. In addition to Fano
resonance, the channel shows strong Coulomb response to the dot, with a single
electron modulating channel conductance by factors of up to 100. Where these
effects coexist, lineshapes with up to four extrema are found. A model of
Coulomb-modified Fano resonance is developed and gives excellent agreement with
experiment.Comment: related papers available at http://marcuslab.harvard.ed
Fast Single-Charge Sensing with an rf Quantum Point Contact
We report high-bandwidth charge sensing measurements using a GaAs quantum
point contact embedded in a radio frequency impedance matching circuit
(rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to
charge, we demonstrate a conductance sensitivity of 5x10^(-6) e^(2)/h Hz^(-1/2)
with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron
double quantum dot is investigated in a mode where the rf-QPC back-action is
rapidly switched.Comment: related papers available at http://marcuslab.harvard.ed
Lie algebraic noncommuting structures from reparametrisation symmetry
We extend our earlier work of revealing both space-space and space-time
noncommuting structures in various models in particle mechanics exhibiting
reparametrisation symmetry. We show explicitly (in contrast to the earlier
results in our paper \cite{sg}) that for some special choices of the
reparametrisation parameter , one can obtain space-space noncommuting
structures which are Lie-algebraic in form even in the case of the relativistic
free particle. The connection of these structures with the existing models in
the literature is also briefly discussed. Further, there exists some values of
for which the noncommutativity in the space-space sector can be made
to vanish. As a matter of internal consistency of our approach, we also study
the angular momentum algebra in details.Comment: 9 pages Latex, some references adde
Two-stage Kondo effect in a four-electron artificial atom
An artificial atom with four electrons is driven through a singlet-triplet
transition by varying the confining potential. In the triplet, a Kondo peak
with a narrow dip at drain-source voltage V_ds=0 is observed. The low energy
scale V_ds* characterizing the dip is consistent with predictions for the
two-stage Kondo effect. The phenomenon is studied as a function of temperature
T and magnetic field B, parallel to the two-dimensional electron gas. The low
energy scales T* and B* are extracted from the behavior of the zero-bias
conductance and are compared to the low energy scale V_ds* obtained from the
differential conductance. Good agreement is found between kT* and |g|muB*, but
eV_ds* is larger, perhaps because of nonequilibrium effects.Comment: 7 pages, 7 figures. Added labels on Fig. 3f and one referenc
The de Sitter Relativistic Top Theory
We discuss the relativistic top theory from the point of view of the de
Sitter (or anti de Sitter) group. Our treatment rests on Hanson-Regge's
spherical relativistic top lagrangian formulation. We propose an alternative
method for studying spinning objects via Kaluza-Klein theory. In particular, we
derive the relativistic top equations of motion starting with the geodesic
equation for a point particle in 4+N dimensions. We compare our approach with
the Fukuyama's formulation of spinning objects, which is also based on
Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D
dimensional theory.Comment: 25 pages, Latex,commnets and references adde
Cotunneling Spectroscopy in Few-Electron Quantum Dots
Few-electron quantum dots are investigated in the regime of strong tunneling
to the leads. Inelastic cotunneling is used to measure the two-electron
singlet-triplet splitting above and below a magnetic field driven
singlet-triplet transition. Evidence for a non-equilibrium two-electron
singlet-triplet Kondo effect is presented. Cotunneling allows orbital
correlations and parameters characterizing entanglement of the two-electron
singlet ground state to be extracted from dc transport.Comment: related papers available at http://marcuslab.harvard.ed
Minimizing Strong Telluric Absorption in Near Infra-red Stellar Spectra
We have obtained high resolution spectra (R = 25000) of an A star over
varying airmass to determine the effectiveness of telluric removal in the limit
of high signal to noise. The near infra-red line HeI at 2.058 microns, which is
a sensitive indicator of physical conditions in massive stars, supergiants, HII
regions and YSOs, resides among pressure broadened telluric absorption from
carbon dioxide and water vapor that varies both in time and with observed
airmass.
Our study shows that in the limit of bright stars at high resolution,
accuracies of 5% are typical for high airmass observations (greater than 1.9),
improving to a photon-limited accuracy of 2% at smaller airmasses (less than
1.15). We find that by using the continuum between telluric absorption lines of
a ro-vibrational fan a photon-limited 1% accuracy is achievable.Comment: 14 pages, 7 figures. Accepted for publication in PAS
Interlaced Dynamical Decoupling and Coherent Operation of a Singlet-Triplet Qubit
We experimentally demonstrate coherence recovery of singlet-triplet
superpositions by interlacing qubit rotations between Carr-Purcell (CP) echo
sequences. We then compare performance of Hahn, CP, concatenated dynamical
decoupling (CDD) and Uhrig dynamical decoupling (UDD) for singlet recovery. In
the present case, where gate noise and drift combined with spatially varying
hyperfine coupling contribute significantly to dephasing, and pulses have
limited bandwidth, CP and CDD yield comparable results, with T2 ~ 80
microseconds.Comment: related papers at http://marcuslab.harvard.ed
- …