An artificial atom with four electrons is driven through a singlet-triplet
transition by varying the confining potential. In the triplet, a Kondo peak
with a narrow dip at drain-source voltage V_ds=0 is observed. The low energy
scale V_ds* characterizing the dip is consistent with predictions for the
two-stage Kondo effect. The phenomenon is studied as a function of temperature
T and magnetic field B, parallel to the two-dimensional electron gas. The low
energy scales T* and B* are extracted from the behavior of the zero-bias
conductance and are compared to the low energy scale V_ds* obtained from the
differential conductance. Good agreement is found between kT* and |g|muB*, but
eV_ds* is larger, perhaps because of nonequilibrium effects.Comment: 7 pages, 7 figures. Added labels on Fig. 3f and one referenc