690 research outputs found

    Dark energy from scalar field with Gauss Bonnet and non-minimal kinetic coupling

    Full text link
    We study a model of scalar field with a general non-minimal kinetic coupling to itself and to the curvature, and additional coupling to the Gauss Bonnet 4-dimensional invariant. The model presents rich cosmological dynamics and some of its solutions are analyzed. A variety of scalar fields and potentials giving rise to power-law expansion have been found. The dynamical equation of state is studied for two cases, with and without free kinetic term . In both cases phenomenologically acceptable solutions have been found. Some solutions describe essentially dark energy behavior, and and some solutions contain the decelerated and accelerated phases.Comment: 21 page

    Renormalization Group Flow of Quantum Gravity in the Einstein-Hilbert Truncation

    Get PDF
    The exact renormalization group equation for pure quantum gravity is used to derive the non-perturbative \Fbeta-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff function. The features of these flow equations are compared to those found when using a smooth cutoff. The system of equations with sharp cutoff is then solved numerically, deriving the complete renormalization group flow of the Einstein-Hilbert truncation in d=4d=4. The resulting renormalization group trajectories are classified and their physical relevance is discussed. The non-trivial fixed point which, if present in the exact theory, might render Quantum Einstein Gravity nonperturbatively renormalizable is investigated for various spacetime dimensionalities.Comment: 58 pages, latex, 24 figure

    Exact solutions in a scalar-tensor model of dark energy

    Full text link
    We consider a model of scalar field with non minimal kinetic and Gauss Bonnet couplings as a source of dark energy. Based on asymptotic limits of the generalized Friedmann equation, we impose restrictions on the kinetic an Gauss-Bonnet couplings. This restrictions considerable simplify the equations, allowing for exact solutions unifying early time matter dominance with transitions to late time quintessence and phantom phases. The stability of the solutions in absence of matter has been studied.Comment: 30 pages, 2 figures, to appear in JCA

    Asymptotically free scalar curvature-ghost coupling in Quantum Einstein Gravity

    Full text link
    We consider the asymptotic-safety scenario for quantum gravity which constructs a non-perturbatively renormalisable quantum gravity theory with the help of the functional renormalisation group. We verify the existence of a non-Gaussian fixed point and include a running curvature-ghost coupling as a first step towards the flow of the ghost sector of the theory. We find that the scalar curvature-ghost coupling is asymptotically free and RG relevant in the ultraviolet. Most importantly, the property of asymptotic safety discovered so far within the Einstein-Hilbert truncation and beyond remains stable under the inclusion of the ghost flow.Comment: 8 pages, 3 figures, RevTe

    Scalar wormholes with nonminimal derivative coupling

    Get PDF
    We consider static spherically symmetric wormhole configurations in a gravitational theory of a scalar field with a potential V(ϕ)V(\phi) and nonminimal derivative coupling to the curvature describing by the term (ϵgμν+κGμν)ϕ,μϕ,ν(\epsilon g_{\mu\nu} + \kappa G_{\mu\nu}) \phi^{,\mu}\phi^{,\nu} in the action. We show that the flare-out conditions providing the geometry of a wormhole throat could fulfilled both if ϵ=−1\epsilon=-1 (phantom scalar) and ϵ=+1\epsilon=+1 (ordinary scalar). Supposing additionally a traversability, we construct numerical solutions describing traversable wormholes in the model with arbitrary κ\kappa, ϵ=−1\epsilon=-1 and V(ϕ)=0V(\phi)=0 (no potential). The traversability assumes that the wormhole possesses two asymptotically flat regions with corresponding Schwarzschild masses. We find that asymptotical masses of a wormhole with nonminimal derivative coupling could be positive and/or negative depending on κ\kappa. In particular, both masses are positive only provided κ<κ1≤0\kappa<\kappa_1\le0, otherwise one or both wormhole masses are negative. In conclusion, we give qualitative arguments that a wormhole configuration with positive masses could be stable.Comment: 17 pages, 8 figure

    Quantum Gravity effects near the null black hole singularity

    Get PDF
    The structure of the Cauchy Horizon singularity of a black hole formed in a generic collapse is studied by means of a renormalization group equation for quantum gravity. It is shown that during the early evolution of the Cauchy Horizon the increase of the mass function is damped when quantum fluctuations of the metric are taken into account.Comment: 15 Pages, one figure. Minor changes in the presentation, to appear on Phys.Rev.

    Is Quantum Einstein Gravity Nonperturbatively Renormalizable?

    Get PDF
    We find considerable evidence supporting the conjecture that four-dimensional Quantum Einstein Gravity is ``asymptotically safe'' in Weinberg's sense. This would mean that the theory is likely to be nonperturbatively renormalizable and thus could be considered a fundamental (rather than merely effective) theory which is mathematically consistent and predictive down to arbitrarily small length scales. For a truncated version of the exact flow equation of the effective average action we establish the existence of a non-Gaussian renormalization group fixed point which is suitable for the construction of a nonperturbative infinite cutoff-limit. The truncation ansatz includes the Einstein-Hilbert action and a higher derivative term.Comment: 18 pages, latex, 3 figure

    Reconstruction of modified gravity with ghost dark energy models

    Full text link
    In this work, we reconstruct the f(R)f(R) modified gravity for different ghost and generalized ghost dark energy models in FRW flat universe, which describe the accelerated expansion of the universe. The equation of state of reconstructed f(R)f(R) - gravity has been calculated. We show that the corresponding f(R)f(R) gravity of ghost dark energy model can behave like phantom or quintessence. We also show that the equation of state of reconstructed f(R)f(R) gravity for generalized ghost model can transit from quintessence regime to the phantom regime as indicated by recent observations.Comment: 13 pages, some references and one author are added. Accepted for publication by MPL

    Observational consequences of the Standard Model Higgs inflation variants

    Full text link
    We consider the possibility to observationally differentiate the Standard Model (SM) Higgs driven inflation with non-minimal couplingto gravity from other variants of SM Higgs inflation based on the scalar field theories with non-canonical kinetic term such as Galileon-like kinetic term and kinetic term with non-minimal derivative coupling to the Einstein tensor. In order to ensure consistent results, we study the SM Higgs inflation variants by using the same method, computing the full dynamics of the background and perturbations of the Higgs field during inflation at quantum level. Assuming that all the SM Higgs inflation variants are consistent theories, we use the MCMC technique to derive constraints on the inflationnoary parameters and the Higgs boson mass from their fit to WMAP7+SN+BAO data set. We conclude that a combination of a Higgs mass measurement by the LHC and accurate determination by the PLANCK satellite of the spectral index of curvature perturbations and tensor-to-scalar ratio will enable to distinguish among these models. We also show that the consistency relations of the SM Higgs inflation variants are distinct enough to differentiate the models.Comment: 22 pages, 4 figure

    Crystal structures of 4-phenylpiperazin-1-ium 6-chloro-5-ethyl-2,4-dioxopyrimidin-1-ide and 4-phenylpiperazin-1-ium 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide

    Get PDF
    The title molecular salts, C10H15N2+·C6H6ClN2O2−, (I), and C10H15N2+·C7H8ClN2O2−, (II), consist of 4-phenylpiperazin-1-ium cations with a 6-chloro-5-ethyl-2,4-dioxopyrimidin-1-ide anion in (I) and a 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide anion in (II). Salt (I) crystallizes with two independent cations and anions in the asymmetric unit. In the crystal structures of both salts, the ions are linked via N—H...O and N—H...N hydrogen bonds, forming sheets which are parallel to (100) in (I) and to (001) in (II). In (I), the sheets are linked via C—H...Cl hydrogen bonds, forming a three-dimensional framework
    • …
    corecore