5,237 research outputs found
On the color structure of Yang-Mills theory with static sources in a periodic box
We present an exploratory numerical study on the lattice of the color
structure of the wave functionals of the SU(3) Yang-Mills theory in the
presence of a static pair. In a spatial box with periodic boundary
conditions we discuss the fact that all states contributing to the Feynman
propagation kernel are global color singlets. We confirm this numerically by
computing the correlations of gauge-fixed Polyakov lines with color-twisted
boundary conditions in the time direction. The values of the lowest energies in
the color singlet and octet external source sectors agree within statistical
errors, confirming that both channels contribute to the lowest (global singlet)
state of the Feynman kernel. We then study the case of homogeneous boundary
conditions in the time direction for which the gauge-fixing is not needed. In
this case the lowest energies extracted in the singlet external source sector
agree with those determined with periodic boundary conditions, while in the
octet sector the correlator is compatible with being null within our
statistical errors. Therefore consistently only the singlet external source
contribution has a non-vanishing overlap with the null-field wave functional.Comment: 9 pages, 3 figure
Quark masses and the chiral condensate with a non-perturbative renormalization procedure
We determine the quark masses and the chiral condensate in the MSbar scheme
at NNLO from Lattice QCD in the quenched approximation at beta=6.0, beta=6.2
and beta=6.4 using both the Wilson and the tree-level improved SW-Clover
fermion action. We extract these quantities using the Vector and the Axial Ward
Identities and non-perturbative values of the renormalization constants. We
compare the results obtained with the two methods and we study the O(a)
dependence of the quark masses for both actions.Comment: LATTICE98(spectrum), 3 pages, 1 figure, Edinburgh 98/1
Relativistic descriptions of quasielastic charged-current neutrino-nucleus scattering: application to scaling and superscaling ideas
The analysis of the recent experimental data on charged-current
neutrino-nucleus scattering cross sections measured at MiniBooNE requires fully
relativistic theoretical descriptions also accounting for the role of final
state interactions. In this work we evaluate inclusive quasielastic
differential neutrino cross sections within the framework of the relativistic
impulse approximation. Results based on the relativistic mean field potential
are compared with the ones corresponding to the relativistic Green function
approach. An analysis of scaling and superscaling properties provided by both
models is also presented.Comment: 11 pages, 8 figures, version accepted for publication in Physical
Review
Temporal pattern of Klebsiella pneumoniae carbapenemase (KPC) on surface of an intensive care unit of a large hospital
Background: Carbapenem-resistant Enterobacteriaceae are an increasing cause of healthcare-associated infections worldwide. Patients with infections caused by Klebsiella pneumoniae resistant to carbapenems (KPC) have significant increases in both allcause mortality and 30-day mortality. The aims of this study was to investigate the prevalence of KPC on environmental samples collected during and after an outbreak caused by KPC in an intensive care unit (ICU) of a teaching hospital. Methods: Between 2010 and 2014 we conducted a total of 132 environmental monitoring campaigns from different critical surface of ICU ward in a Teaching Hospital Policlinico Umberto I. Samples were collected on surfaces in patient rooms and health care area. All samples were cultured and K. pneumoniae isolates were identified by standard microbiological techniques. The presumptive colonies were confirmed and tested for antibiotic resistance by an automated system. K. pneumoniae resitant to carbapenems were tested for carbapenemase production by modified Hodge test. Results: A total of 2526 environmental samples were collected from November 2010 to July 2014. Of those, 111 resulted positive for K. pneumoniae while KPC were 95 (85.6% of all K. pneumoniae, 3.8% of total samples). KPC was recovered in all patient rooms with similar proportion (5.1-5.6%) with the exception of patient 6 bed room where it was lower (2.4%). The pathogen was not recovered in rooms dedicated to healthcare personnel and doctors. Among surfaces, the highest proportion of KPC resulted on bedrail (6.8%), more than double than other surfaces. Washbasins had nearly half of samples KPC positive (1.2%). Conclusions: Despite previous studies suggested that environment plays a minor role in the transmission of carbapenem-resistant enterobacteriaceae, our data highlighted that surfaces represents a significant reservoir for KPC possibly supporting transiently contamination of hands of healthcare workers in our ICU. Our results confirm that KPC are more likely found on surfaces closer to the patient than on those situated further away
Theta dependence of the vacuum energy in the SU(3) gauge theory from the lattice
We report on a precise computation of the topological charge distribution in
the SU(3) Yang--Mills theory. It is carried out on the lattice with high
statistics Monte Carlo simulations by employing the definition of the
topological charge suggested by Neuberger's fermions. We observe significant
deviations from a Gaussian distribution. Our results disfavour the theta
behaviour of the vacuum energy predicted by instanton models, while they are
compatible with the expectation from the large Nc expansion.Comment: Plain latex, 4 pages, 2 figure
Relativistic descriptions of final-state interactions in charged-current quasielastic neutrino-nucleus scattering at MiniBooNE kinematics
The results of two relativistic models with different descriptions of the
final-state interactions are compared with the MiniBooNE data of
charged-current quasielastic cross sections. The relativistic mean field model
uses the same potential for the bound and ejected nucleon wave functions. In
the relativistic Green's function (RGF) model the final-state interactions are
described in the inclusive scattering consistently with the exclusive
scattering using the same complex optical potential. The RGF results describe
the experimental data for total cross-sections without the need to modify the
nucleon axial mass.Comment: 5 pages 3 figure
Optimization of Generalized Multichannel Quantum Defect reference functions for Feshbach resonance characterization
This work stresses the importance of the choice of the set of reference
functions in the Generalized Multichannel Quantum Defect Theory to analyze the
location and the width of Feshbach resonance occurring in collisional
cross-sections. This is illustrated on the photoassociation of cold rubidium
atom pairs, which is also modeled using the Mapped Fourier Grid Hamiltonian
method combined with an optical potential. The specificity of the present
example lies in a high density of quasi-bound states (closed channel)
interacting with a dissociation continuum (open channel). We demonstrate that
the optimization of the reference functions leads to quantum defects with a
weak energy dependence across the relevant energy threshold. The main result of
our paper is that the agreement between the both theoretical approaches is
achieved only if optimized reference functions are used.Comment: submitte to Journal of Physics
The Index Theorem and Universality Properties of the Low-lying Eigenvalues of Improved Staggered Quarks
We study various improved staggered quark Dirac operators on quenched gluon
backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We
find a clear separation of the spectrum into would-be zero modes and others.
The number of would-be zero modes depends on the topological charge as expected
from the Index Theorem, and their chirality expectation value is large
(approximately 0.7). The remaining modes have low chirality and show clear
signs of clustering into quartets and approaching the random matrix theory
predictions for all topological charge sectors. We conclude that improvement of
the fermionic and gauge actions moves the staggered quarks closer to the
continuum limit where they respond correctly to QCD topology.Comment: 4 pages, 3 figure
- …