1,381 research outputs found

    Large modulation of the Shubnikov-de Haas oscillations by the Rashba interaction at the LaAlO3_{3}/SrTiO3_{3} interface

    Full text link
    We investigate the 2-dimensional Fermi surface of high-mobility LaAlO3_3/SrTiO3_3 interfaces using Shubnikov-de Haas oscillations. Our analysis of the oscillation pattern underscores the key role played by the Rashba spin-orbit interaction brought about by the breaking of inversion symmetry, as well as the dominant contribution of the heavy dxzd_{xz}/dyzd_{yz} orbitals on electrical transport. We furthermore bring into light the complex evolution of the oscillations with the carrier density, which is tuned by the field effect

    Tunable Rashba spin-orbit interaction at oxide interfaces

    Full text link
    The quasi-two-dimensional electron gas found at the LaAlO3/SrTiO3 interface offers exciting new functionalities, such as tunable superconductivity, and has been proposed as a new nanoelectronics fabrication platform. Here we lay out a new example of an electronic property arising from the interfacial breaking of inversion symmetry, namely a large Rashba spin-orbit interaction, whose magnitude can be modulated by the application of an external electric field. By means of magnetotransport experiments we explore the evolution of the spin-orbit coupling across the phase diagram of the system. We uncover a steep rise in Rashba interaction occurring around the doping level where a quantum critical point separates the insulating and superconducting ground states of the system

    Band inversion driven by electronic correlations at the (111) LaAlO3_3/SrTiO3_3 interface

    Get PDF
    Quantum confinement at complex oxide interfaces establishes an intricate hierarchy of the strongly correlated dd-orbitals which is widely recognized as a source of emergent physics. The most prominent example is the (001) LaAlO3_3/SrTiO3_3(LAO/STO) interface, which features a dome-shaped phase diagram of superconducting critical temperature and spin-orbit coupling (SOC) as a function of electrostatic doping, arising from a selective occupancy of t2gt_{2g} orbitals of different character. Here we study (111)-oriented LAO/STO interfaces - where the three t2gt_{2g} orbitals contribute equally to the sub-band states caused by confinement - and investigate the impact of this unique feature on electronic transport. We show that transport occurs through two sets of electron-like sub-bands, and the carrier density of one of the sets shows a non-monotonic dependence on the sample conductance. Using tight-binding modeling, we demonstrate that this behavior stems from a band inversion driven by on-site Coulomb interactions. The balanced contribution of all t2gt_{2g} orbitals to electronic transport is shown to result in strong SOC with reduced electrostatic modulation.Comment: 5 pages, 4 figures, (+ supplemental material

    Correlation length in cuprates deduced from the impurity-induced magnetization

    Full text link
    We report a new multi-nuclei based NMR method which allows us to image the staggered polarization induced by nonmagnetic Li impurities in underdoped O6.6 and slightly overdoped O7 YBa2Cu3O6+y above T_C. The spatial extension of the polarization xi_imp approximately follows a Curie law, increasing up to six lattice constants at T=80K at O6.6 in the pseudogap regime. Near optimal doping, the staggered magnetization has the same shape, with xi_imp reduced by a factor 2. xi_imp is argued to reveal the intrinsic magnetic correlation length of the pure system. It is found to display a smooth evolution through the pseudogap regime.Comment: 8 latex pages + 8 figures, to appear in Physical Review B, this resubmitted version is twice longer than the previous one : we detail here our method to determine the impurity-induced magnetizatio

    Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces

    Full text link
    We report on a study of magnetotransport in LaAlO3/SrTiO3 interfaces characterized by mobilities of the order of several thousands cm2^{2}/Vs. We observe Shubnikov-de Haas oscillations that indicate a two-dimensional character of the Fermi surface. The frequency of the oscillations signals a multiple sub-bands occupation in the quantum well or a multiple valley configuration. From the temperature dependence of the oscillation amplitude we extract an effective carrier mass m1.45m^{*}\simeq1.45\,mem_{e}. An electric field applied in the back-gate geometry increases the mobility, the carrier density and the oscillation frequency.Comment: 4 pages, 4 figure

    Smecticlike phase for modulated XY spins in two dimensions

    Get PDF
    The row model for frustrated XY spins on a triangular lattice in 2D is used to study incommensurate{IC}) spiral and commensurate{C} antiferromagnetic (AF) phases, in the regime where a C-IC transition occurs. Using fluctuating boundary conditions and specific histogram techniques, a detailed Monte Carlo (MC) study reveals more structure in the phase diagram than found in previous MC simulations of the full parameter space. On the (C) side, equilibrium configurations consist of alternating stripes of spiral phases of opposite chirality separated by walls of the (C) phase. For this same parameter regime, thermodynamic quantities are computed analytically using the NSCHA, a generalization of the self consistent harmonic approximation appropriate for chiral systems. On the commensurate side of the (C)-(IC) boundary, NSCHA predicts an instability of the (C) phase. This suggests that the state is spatially inhomogeneous, consistent with the present MC result: it resembles the smectic-A phase of liquid crystals, and its existence implies that the Lifshitz point is at T=0{T=0} for modulated XY spins in 2D. The connection between frustrated XY systems and the vortex state of strong type II superconductors suggests that the smectic phase may correspond to a vortex liquid phase of superconducting layers.Comment: Single Postscript file containing 24 pages of text and 8 figures. To appear in May 1 issue of Phys. Rev. B, Vol. 5

    Bimodal Phase Diagram of the Superfluid Density in LaAlO3/SrTiO3 Revealed by an Interfacial Waveguide Resonator

    Full text link
    We explore the superconducting phase diagram of the two-dimensional electron system at the LaAlO3/SrTiO3 interface by monitoring the frequencies of the cavity modes of a coplanar waveguide resonator fabricated in the interface itself. We determine the phase diagram of the superconducting transition as a function of temperature and electrostatic gating, finding that both the superfluid density and the transition temperature follow a dome shape, but that the two are not monotonically related. The ground state of this 2DES is interpreted as a Josephson junction array, where a transition from long- to short-range order occurs as a function of the electronic doping. The synergy between correlated oxides and superconducting circuits is revealed to be a promising route to investigate these exotic compounds, complementary to standard magneto-transport measurements.Comment: 5 pages, 4 figures and 10 pages of supplementary materia

    Exact Hybrid Covariance Thresholding for Joint Graphical Lasso

    Full text link
    This paper considers the problem of estimating multiple related Gaussian graphical models from a pp-dimensional dataset consisting of different classes. Our work is based upon the formulation of this problem as group graphical lasso. This paper proposes a novel hybrid covariance thresholding algorithm that can effectively identify zero entries in the precision matrices and split a large joint graphical lasso problem into small subproblems. Our hybrid covariance thresholding method is superior to existing uniform thresholding methods in that our method can split the precision matrix of each individual class using different partition schemes and thus split group graphical lasso into much smaller subproblems, each of which can be solved very fast. In addition, this paper establishes necessary and sufficient conditions for our hybrid covariance thresholding algorithm. The superior performance of our thresholding method is thoroughly analyzed and illustrated by a few experiments on simulated data and real gene expression data
    corecore