335 research outputs found
Detection of doubly-deuterated methanol in the solar-type protostar IRAS16293-2422
We report the first detection of doubly-deuterated methanol (CHD2OH), as well
as firm detections of the two singly-deuterated isotopomers of methanol (CH2DOH
and CH3OD), towards the solar-type protostar IRAS16293-2422. From the present
multifrequency observations, we derive the following abundance ratios:
[CHD2OH]/[CH3OH] = 0.2 +/- 0.1, [CH2DOH]/[CH3OH] = 0.9 +/- 0.3, [CH3OD]/[CH3OH]
= 0.04 +/- 0.02. The total abundance of the deuterated forms of methanol is
greater than that of its normal hydrogenated counterpart in the circumstellar
material of IRAS16293-2422, a circumstance not previously encountered.
Formaldehyde, which is thought to be the chemical precursor of methanol,
possesses a much lower fraction of deuterated isotopomers (~ 20%) with respect
to the main isotopic form in IRAS16293-2422. The observed fractionation of
methanol and formaldehyde provides a severe challenge to both gas-phase and
grain-surface models of deuteration. Two examples of the latter model are
roughly in agreement with our observations of CHD2OH and CH2DOH if the
accreting gas has a large (0.2-0.3) atomic D/H ratio. However, no gas-phase
model predicts such a high atomic D/H ratio, and hence some key ingredient
seems to be missing.Comment: 5 pages, 3 figure
Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems
We study the effect of randomness and anisotropy on Turing patterns in
reaction-diffusion systems. For this purpose, the Gierer-Meinhardt model of
pattern formation is considered. The cases we study are: (i)randomness in the
underlying lattice structure, (ii)the case in which there is a probablity p
that at a lattice site both reaction and diffusion occur, otherwise there is
only diffusion and lastly, the effect of (iii) anisotropic and (iv) random
diffusion coefficients on the formation of Turing patterns. The general
conclusion is that the Turing mechanism of pattern formation is fairly robust
in the presence of randomness and anisotropy.Comment: 11 pages LaTeX, 14 postscript figures, accepted in Phys. Rev.
The puzzling detection of D_2CO in the molecular cloud L1689N
We present new observations of the D_2CO emission towards the small cloud L1689N in the Ï Ophiuchus complex. We surveyed five positions, three being a cut across a shock site and two probing the quiescent gas of the molecular cloud. We detected D_2CO emission in the first three positions. The measured [D_2CO] /[ H2CO] is about 3%, whereas it is â€2% in the quiescent gas. We discuss the implications of these new observations, which suggest that the bulk of the D_2CO molecules is stored in grain mantles, and removed from the cold storage by the shock at the interface between the outflowing and quiescent gas. We review the predictions of the published models proposed to explain the observed high deuteration of formaldehyde. They fall in two basic schemes: gas phase and grain surface chemistry. None of the reviewed models is able to account for the observed [D_2CO] /[H_2CO] abundance ratio. A common characteristics shared by the models is apparently that all underestimate the atomic [D]/[H] ratio in the accreting gas
Submillimeter mapping and analysis of cold dust condensations in the Orion M42 star forming complex
We present here the continuum submillimeter maps of the molecular cloud
around the M42 Nebula in the Orion region. These have been obtained in four
wavelength bands (200, 260, 360 and 580 microns) with the ProNaOS two meter
balloon-borne telescope. The area covered is 7 parsecs wide (50 arcmin at a
distance of 470 pc) with a spatial resolution of about 0.4 parsec. Thanks to
the high sensitivity to faint surface brightness gradients, we have found
several cold condensations with temperatures ranging from 12 to 17 K, within 3
parsecs of the dense ridge. The statistical analysis of the temperature and
spectral index spatial distribution shows an evidence of an inverse correlation
between these two parameters. Being invisible in the IRAS 100 micron survey,
some cold clouds are likely to be the seeds for future star formation activity
going on in the complex. We estimate their masses and we show that two of them
have masses higher than their Jeans masses, and may be gravitationally
unstable.Comment: 4 figures, The Astrophysical Journal, Main Journal, in pres
Water emission in NGC1333-IRAS4: The physical structure of the envelope
We report ISO-LWS far infrared observations of CO, water and oxygen lines
towards the protobinary system IRAS4 in the NGC1333 cloud. We detected several
water, OH, CO rotational lines, and two [OI] and [CII] fine structure lines.
Given the relatively poor spectral and spatial resolution of these
observations, assessing the origin of the observed emission is not
straightforward. In this paper, we focus on the water line emission and explore
the hypothesis that it originates in the envelopes that surround the two
protostars, IRAS4 A and B, thanks to an accurate model. The model reproduces
quite well the observed water line fluxes, predicting a density profile, mass
accretion rate, central mass, and water abundance profile in agreement with
previous works. We hence conclude that the emission from the envelopes is a
viable explanation for the observed water emission, although we cannot totally
rule out the alternative that the observed water emission originates in the
outflow
First detection of triply-deuterated methanol
We report the first detection of triply-deuterated methanol, with 12 observed
transitions, towards the low-mass protostar IRAS 16293-2422, as well as
multifrequency observations of 13CH3OH, used to derive the column density of
the main isotopomer CH3OH. The derived fractionation ratio [CD3OH]/[CH3OH]
averaged on a 10'' beam is 1.4%. Together with previous CH2DOH and CHD2OH
observations, the present CD3OH observations are consistent with a formation of
methanol on grain surfaces, if the atomic D/H ratio is 0.1 to 0.3 in the
accreting gas. Such a high atomic ratio can be reached in the frame of
gas-phase chemical models including all deuterated isotopomers of H3+.Comment: Accepted by A&
A map of OMC-1 in CO 9-8
The distribution of 12C16O J=9-8 (1.037 THz) emission has been mapped in
OMC-1 at 35 points with 84" resolution. This is the first map of this source in
this transition and only the second velocity-resolved ground-based observation
of a line in the terahertz frequency band. There is emission present at all
points in the map, a region roughly 4' by 6' in size, with peak antenna
temperature dropping only near the edges. Away from the Orion KL outflow, the
velocity structure suggests that most of the emission comes from the OMC-1
photon-dominated region, with a typical linewidthof 3-6 km/s. Large velocity
gradient modeling of the emission in J=9-8 and six lower transitions suggests
that the lines originate in regions with temperatures around 120 K and
densities of at least 10^(3.5) cm^(-3) near theta^(1) C Ori and at the Orion
Bar, and from 70 K gas at around 10^(4) cm^(-3) southeast and west of the bar.
These observations are among the first made with the 0.8 m Smithsonian
Astrophysical Observatory Receiver Lab Telescope, a new instrument designed to
observe at frequencies above 1 THz from an extremely high and dry site in
northern Chile.Comment: Minor changes to references, text to match ApJ versio
CO(1-0), CO(2-1) and Neutral Gas in NGC 6946: Molecular Gas in a Late-Type, Gas Rich, Spiral Galaxy
We present "On The Fly" maps of the CO(1-0) and CO(2-1) emission covering a
10' X 10' region of the NGC 6946. Using our CO maps and archival VLA HI
observations we create a total gas surface density map, Sigma_gas, for NGC
6946. The predominantly molecular inner gas disk transitions smoothly into an
atomic outer gas disk, with equivalent atomic and molecular gas surface
densities at R = 3.5' (6 kpc). We estimate that the total H2 mass is 3 X 10^9
Mo, roughly 1/3 of the interstellar hydrogen gas mass, and about 2% of the
dynamical mass of the galaxy at our assumed distance of 6 Mpc. The value of the
CO(2-1)/CO(1-0) line ratio ranges from 0.35 to 2; 50% of the map is covered by
very high ratio, >1, gas. The very high ratios are predominantly from interarm
regions and appear to indicate the presence of wide-spread optically thin gas.
Star formation tracers are better correlated with the total neutral gas disk
than with the molecular gas by itself implying SFR is proportional to
Sigma_gas. Using the 100 FIR and 21 cm continuum from NGC 6946 as star
formation tracers, we arrive at a gas consumption timescale of 2.8 Gyr, which
is relatively uniform across the disk. The high star formation rate at the
nucleus appears to be due to a large accumulation of molecular gas rather than
a large increase in the star formation efficiency. The mid-plane gas pressure
in the outer (R > 10 kpc) HI arms of NGC 6946 is close to the value at the
radial limit (10 kpc) of our observed CO disk. If the mid-plane gas pressure is
a factor for the formation of molecular clouds, these outer HI gas arms should
contain molecular gas which we do not see because they are beyond our detection
limit
- âŠ