4,047 research outputs found

    Method of computation of energies in the fractional quantum Hall effect regime

    Full text link
    In a previous work, we reported exact results of energies of the ground state in the fractional quantum Hall effect (FQHE) regime for systems with up to Ne=6N_{\text{e}} = 6 electrons at the filling factor ν=1/3\nu = 1/3 by using the method of complex polar coordinates. In this work, we display interesting computational details of the previous calculation and extend the calculation to Ne=7N_{\text{e}} = 7 electrons at ν=1/3\nu = 1/3. Moreover, similar exact results are derived at the filling ν=1/5\nu = 1/5 for systems with up to Ne=6N_{\text{e}} = 6 electrons. The results that we obtained by analytical calculation are in good agreement with their analogues ones derived by the method of Monte Carlo in a precedent work.Comment: 9 pages, 1 figur

    Comparison of spectrum occupancy measurements using software defined radio RTL-SDR with a conventional spectrum analyzer approach

    Get PDF
    In the present day Cognitive Radio has become a realistic option for solution of the spectrum scarcity problem in wireless communication. Recently, the TV band has attracted attention due to the considerable potential for exploitation of available TV white space which is not utilized based on time and location. In this paper, we investigate spectrum occupancy of the UHF TV band in the frequency range from 470 to 862MHz by using two different devices, the low cost device RTL-SDR and high cost spectrum analyzer. The spectrum occupancy measurements provide evidence of the utility of using the inexpensive RTL SDR and illustrate its effectiveness for detection of the percentage of spectrum utilization compared with results from the conventional high cost Agilent spectrum analyzer, both systems employing various antennas

    Cooperative wideband spectrum sensing with multi-bit hard decision in cognitive radio

    Get PDF
    Cognitive radio offers an increasingly attractive solution to overcome the underutilization problem. A sensor network based cooperative wideband spectrum sensing is proposed in this paper. The purpose of the sensor network is to determine the frequencies of the sources and reduced the total sensing time using a multi-resolution sensing technique. The final result is computed by data fusion of multi-bit decisions made by each cooperating secondary user. Simulation results show improved performance in energy efficiency

    Spectrum occupancy measurements and lessons learned in the context of cognitive radio

    Get PDF
    Various measurement campaigns have shown that numerous spectrum bands are vacant even though licenses have been issued by the regulatory agencies. Dynamic spectrum access (DSA) based on Cognitive Radio (CR) has been regarded as a prospective solution to improve spectrum utilization for wireless communications. Empirical measurement of the radio environment to promote understanding of the current spectrum usage of the different wireless services is the first step towards deployment of future CR networks. In this paper we present our spectrum measurement setup and discuss lessons learned during our measurement activities. The main contribution of the paper is to introduce global spectrum occupancy measurements and address the major drawbacks of previous spectrum occupancy studies by providing a unifying methodological framework for future spectrum measurement campaigns

    Experimental detection using cyclostationary feature detectors for cognitive radios

    Get PDF
    © 2014 IEEE. Signal detection is widely used in many applications. Some examples include Cognitive Radio (CR) and military intelligence. Without guaranteed signal detection, a CR cannot reliably perform its role. Spectrum sensing is currently one of the most challenging problems in cognitive radio design because of various factors such as multi-path fading and signal to noise ratio (SNR). In this paper, we particularly focus on the detection method based on cyclostationary feature detectors (CFD) estimation. The advantage of CFD is its relative robustness against noise uncertainty compared with energy detection methods. The experimental result present in this paper show that the cyclostationary feature-based detection can be robust compared to energy-based technique for low SNR levels

    Quality measurements of an UWB reduced-size CPW-fed aperture antenna

    Get PDF
    The paper presents a characterization of a compact co-planar waveguide (CPW)-fed slot loaded low return loss planar printed antenna designed for wireless communication and ultra-wideband (UWB) applications. Following a review of the antenna design, which was implemented and simulated using Agilent's Advanced Design System (ADS), the paper presents laboratory measurements of relative gain and impulse response transformed from the frequency domain. An antenna quality metric based on time-domain S21 is discussed and related to antenna quality metrics such as the System Fidelity Factor (SFF)

    Specific recognition of a multiply phosphorylated motif in the DNA repair scaffold XRCC1 by the FHA domain of human PNK.

    Get PDF
    Short-patch repair of DNA single-strand breaks and gaps (SSB) is coordinated by XRCC1, a scaffold protein that recruits the DNA polymerase and DNA ligase required for filling and sealing the damaged strand. XRCC1 can also recruit end-processing enzymes, such as PNK (polynucleotide kinase 3'-phosphatase), Aprataxin and APLF (aprataxin/PNK-like factor), which ensure the availability of a free 3'-hydroxyl on one side of the gap, and a 5'-phosphate group on the other, for the polymerase and ligase reactions respectively. PNK binds to a phosphorylated segment of XRCC1 (between its two C-terminal BRCT domains) via its Forkhead-associated (FHA) domain. We show here, contrary to previous studies, that the FHA domain of PNK binds specifically, and with high affinity to a multiply phosphorylated motif in XRCC1 containing a pSer-pThr dipeptide, and forms a 2:1 PNK:XRCC1 complex. The high-resolution crystal structure of a PNK-FHA-XRCC1 phosphopeptide complex reveals the basis for this unusual bis-phosphopeptide recognition, which is probably a common feature of the known XRCC1-associating end-processing enzymes

    Space-Time Structure and Electromagnetism

    Full text link
    Two Lagrangian functions are used to construct geometric field theories. One of these Lagrangians depends on the curvature of space, while the other depends on curvature and torsion. It is shown that the theory constructed from the first Lagrangian gives rise to pure gravity, while the theory constructed using the second Lagrangian gives rise to both gravity and electromagnetism. The two theories are constructed in a version of absolute parallelism geometry in which both curvature and torsion are, simultaneously, non-vanishing. One single geometric object, {\it W-tensor}, reflecting the properties of curvature and torsion, is defined in this version and is used to construct the second theory. The main conclusion is that a necessary condition for geometric representation of electromagnetism is the presence of a non-vanishing torsion in the geometry used.Comment: 17 pages, LaTeX file, revised versio

    Adaptive management of technical condition of power transformers

    Get PDF
    Ensuring reliable operation of power transformers as part of electric power facilities is assigned to the maintenance and repair system, whose important components are diagnostics and monitoring of the technical condition. Monitoring allows you to answer the question of whether the transformer abnormalities and how to do they manifest, while diagnostics allow determining the nature, the severity of the problem, determine the cause and possible consequences. The article presents the results of the authors ' research on creating an algorithm for adaptive control of the technical condition of power transformers using diagnostic and monitoring data. The developed algorithm implements the decision-making procedure for ensuring the reliable operation of oil-filled transformer equipment as part of the substations of electric power facilities. The decision-making procedure is based on the method of statistical Bayesian identification the states of a transformer based on the results of dissolved gas analysis (DGA) in oil. The method is characterized by high reliability of recognizing defects in the transformer and the ability to adapt the probabilities of the obtained solutions to the newly received diagnostic information. These results illustrate the effectiveness of the developed approach and the possibility of its application in the operation of oil-filled transformer equipment
    corecore