98 research outputs found

    Can one see entanglement ?

    Get PDF
    The human eye can detect optical signals containing only a few photons. We investigate the possibility to demonstrate entanglement with such biological detectors. While one person could not detect entanglement by simply observing photons, we discuss the possibility for several observers to demonstrate entanglement in a Bell-type experiment, in which standard detectors are replaced by human eyes. Using a toy model for biological detectors that captures their main characteristic, namely a detection threshold, we show that Bell inequalities can be violated, thus demonstrating entanglement. Remarkably, when the response function of the detector is close to a step function, quantum non-locality can be demonstrated without any further assumptions. For smoother response functions, as for the human eye, post-selection is required.Comment: 5 pages, 5 figure

    Multipartite fully-nonlocal quantum states

    Full text link
    We present a general method to characterize the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully-nonlocal according to a given partition, as well as being (genuinely) multipartite fully-nonlocal, are derived. These conditions allow us to identify all completely-connected graph states as multipartite fully-nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully-nonlocal.Comment: 5 pages, 1 figure. Version published in PRA. Note that it does not contain all the results from the previous version; these will be included in a later, more general, pape

    Maximal violation of the I3322 inequality using infinite dimensional quantum systems

    Full text link
    The I3322 inequality is the simplest bipartite two-outcome Bell inequality beyond the Clauser-Horne-Shimony-Holt (CHSH) inequality, consisting of three two-outcome measurements per party. In case of the CHSH inequality the maximal quantum violation can already be attained with local two-dimensional quantum systems, however, there is no such evidence for the I3322 inequality. In this paper a family of measurement operators and states is given which enables us to attain the largest possible quantum value in an infinite dimensional Hilbert space. Further, it is conjectured that our construction is optimal in the sense that measuring finite dimensional quantum systems is not enough to achieve the true quantum maximum. We also describe an efficient iterative algorithm for computing quantum maximum of an arbitrary two-outcome Bell inequality in any given Hilbert space dimension. This algorithm played a key role to obtain our results for the I3322 inequality, and we also applied it to improve on our previous results concerning the maximum quantum violation of several bipartite two-outcome Bell inequalities with up to five settings per party.Comment: 9 pages, 3 figures, 1 tabl

    Multipartite quantum nonlocality under local decoherence

    Full text link
    We study the nonlocal properties of two-qubit maximally-entangled and N-qubit Greenberger-Horne-Zeilinger states under local decoherence. We show that the (non)resilience of entanglement under local depolarization or dephasing is not necessarily equivalent to the (non)resilience of Bell-inequality violations. Apart from entanglement and Bell-inequality violations, we consider also nonlocality as quantified by the nonlocal content of correlations, and provide several examples of anomalous behaviors, both in the bipartite and multipartite cases. In addition, we study the practical implications of these anomalies on the usefulness of noisy Greenberger-Horne-Zeilinger states as resources for nonlocality-based physical protocols given by communication complexity problems. There, we provide examples of quantum gains improving with the number of particles that coexist with exponentially-decaying entanglement and non-local contents.Comment: 6 pages, 4 figure

    All Entangled Quantum States Are Nonlocal

    Full text link
    Departing from the usual paradigm of local operations and classical communication adopted in entanglement theory, here we study the interconversion of quantum states by means of local operations and shared randomness. A set of necessary and sufficient conditions for the existence of such a transformation between two given quantum states is given in terms of the payoff they yield in a suitable class of nonlocal games. It is shown that, as a consequence of our result, such a class of nonlocal games is able to witness quantum entanglement, however weak, and reveal nonlocality in any entangled quantum state. An example illustrating this fact is provided.Comment: 4+2 pages. Final version published in PRL. The related APS Physics Viewpoint can be found at http://dx.doi.org/10.1103/Physics.5.5

    On local-hidden-variable no-go theorems

    Full text link
    The strongest attack against quantum mechanics came in 1935 in the form of a paper by Einstein, Podolsky and Rosen. It was argued that the theory of quantum mechanics could not be called a complete theory of Nature, for every element of reality is not represented in the formalism as such. The authors then put forth a proposition: we must search for a theory where, upon knowing everything about the system, including possible hidden variables, one could make precise predictions concerning elements of reality. This project was ultimatly doomed in 1964 with the work of Bell Bell, who showed that the most general local hidden variable theory could not reproduce correlations that arise in quantum mechanics. There exist mainly three forms of no-go theorems for local hidden variable theories. Although almost every physicist knows the consequences of these no-go theorems, not every physicist is aware of the distinctions between the three or even their exact definitions. Thus we will discuss here the three principal forms of no-go theorems for local hidden variable theories of Nature. We will define Bell inequalities, Bell inequalities without inequalities and pseudo-telepathy. A discussion of the similarities and differences will follow.Comment: 7 pages, no figure, replaced "Bell inequalities" with "Bell theorems" and updated the reference

    On the logical structure of Bell theorems without inequalities

    Full text link
    Bell theorems show how to experimentally falsify local realism. Conclusive falsification is highly desirable as it would provide support for the most profoundly counterintuitive feature of quantum theory - nonlocality. Despite the preponderance of evidence for quantum mechanics, practical limits on detector efficiency and the difficulty of coordinating space-like separated measurements have provided loopholes for a classical worldview; these loopholes have never been simultaneously closed. A number of new experiments have recently been proposed to close both loopholes at once. We show some of these novel designs fail in the most basic way, by not ruling out local hidden variable models, and we provide an explicit classical model to demonstrate this. They share a common flaw, which reveals a basic misunderstanding of how nonlocality proofs work. Given the time and resources now being devoted to such experiments, theoretical clarity is essential. Our explanation is presented in terms of simple logic and should serve to correct misconceptions and avoid future mistakes. We also show a nonlocality proof involving four participants which has interesting theoretical properties.Comment: 8 pages, text clarified, explicit LHV model provided for flawed nonlocality tes

    The local content of all pure two-qubit states

    Get PDF
    The (non-)local content in the sense of Elitzur, Popescu, and Rohrlich (EPR2) [Phys. Lett. A 162, 25 (1992)] is a natural measure for the (non-)locality of quantum states. Its computation is in general difficult, even in low dimensions, and is one of the few open questions about pure two-qubit states. We present a complete solution to this long-lasting problem.Comment: 9 pages, 3 figure

    Quantifying the nonlocality of GHZ quantum correlations by a bounded communication simulation protocol

    Get PDF
    The simulation of quantum correlations with alternative nonlocal resources, such as classical communication, gives a natural way to quantify their nonlocality. While multipartite nonlocal correlations appear to be useful resources, very little is known on how to simulate multipartite quantum correlations. We present the first known protocol that reproduces 3-partite GHZ correlations with bounded communication: 3 bits in total turn out to be sufficient to simulate all equatorial Von Neumann measurements on the 3-partite GHZ state.Comment: 7 pages, 1 figur
    corecore