389 research outputs found

    A small sealed Ta crucible for thermal analysis of volatile metallic samples

    Get PDF
    Differential thermal analysis on metallic alloys containing volatile elements can be highly problematic. Here we show how measurements can be performed in commercial, small-sample, equipment without modification. This is achieved by using a sealed Ta crucible, easily fabricated from Ta tubing and sealed in a standard arc furnace. The crucible performance is demonstrated by measurements on a mixture of Mg and MgB2_2, after heating up to 1470C^{\circ}{\rm C}. We also show data, measured on an alloy with composition Gd40_{40}Mg60_{60}, that clearly shows both the liquidus and a peritectic, and is consistent with published phase diagram data

    Effectiveness of lurasidone in schizophrenia or schizoaffective patients switched from other antipsychotics: a 6-month, open-label, extension study

    Get PDF
    Objective. To evaluate the long-term safety and tolerability of lurasidone in schizophrenia and schizoaffective disorder patients switched to lurasidone. Method. Patients in this multicenter, 6-month open-label, flexible-dose, extension study had completed a core 6-week randomized trial in which clinically stable, but symptomatic, outpatients with schizophrenia or schizoaffective disorder were switched to lurasidone. Patients started the extension study on treatment with the same dose of lurasidone taken at study endpoint of the 6-week core study; following this, lurasidone was flexibly dosed (40-120 mg/day), if clinically indicated, starting on Day 7 of the extension study. The primary safety endpoints were the proportion of patients with treatment emergent adverse events (AEs), serious AEs, or who discontinued due to AEs. Secondary endpoints included metabolic variables and measures of extrapyramidal symptoms and akathisia, as well as the Positive and Negative Syndrome Scale (PANSS), Clinical Global Impressions-Severity (CGI-S), and the Calgary Depression Scale for Schizophrenia (CDSS). The study was conducted from August 2010 to November 2011. Results. Of the 198 patients who completed the 6-week core study, 149 (75.3%) entered the extension study and 148 received study medication. A total of 98 patients (65.8%) completed the 6-month extension study. Lurasidone 40, 80, and 120 mg were the modal daily doses for 19 (12.8%), 65 (43.9%), and 64 (43.2%) of patients, respectively. Overall mean (SD) daily lurasidone dose was 102.0 mg (77.1). The most commonly reported AEs were insomnia (13 patients [8.8%]), nausea (13 patients [8.8%]), akathisia (12 patients [8.1%]), and anxiety (9 patients [6.1%]). A total of 16 patients (10.8%) had at least one AE leading to discontinuation from the study. Consistent with prior studies of lurasidone, there was no signal for clinically relevant adverse changes in body weight, lipids, glucose, insulin, or prolactin. Movement disorder rating scales did not demonstrate meaningful changes. Treatment failure (defined as any occurrence of discontinuation due to insufficient clinical response, exacerbation of underlying disease, or AE) was observed for 19 patients (12.8% of patients entering) and median time to treatment failure was 58 days (95% CI 22-86). The discontinuation rate due to any cause was 50/148 (33.8%), and median time to discontinuation was 62 days (95% CI 30-75). The mean PANSS total score, mean CGI-S score, and mean CDSS score decreased consistently from core study baseline across extension visits, indicating an improvement in overall condition. Conclusions. In this 6-month, open-label extension study, treatment with lurasidone was generally well-tolerated with sustained improvement in efficacy measures observed in outpatients with schizophrenia or schizoaffective disorder who had switched to lurasidone from a broad range of antipsychotic agents

    Effectiveness and safety of robotic radiosurgery for optic nerve sheath meningiomas: A single institution series

    Get PDF
    The role of robotic radiosurgery (RRS) in the treatment of optic nerve sheath meningiomas (ONSM) remains controversial and it is only performed in specialized institutions due to tight dose constraints. We evaluated the effectiveness and safety of RRS in the management of ONSM. Twenty-five patients with 27 ONSM lesions who underwent RRS using the Cyberknife (CK) system were retrospectively analyzed (median age, 47.9 years; 84.0% women). Multisession RRS was used with 4–5 fractions with a cumulative dose of 20.0–25.0 Gy in 84.0% of patients and a single fraction at a dose of 14.0–15.0 Gy in 16% of patients. Prior to RRS, seven (28%) patients experienced blindness on the lesion side. In those patients with preserved vision prior to radiosurgery, the visual acuity remained the same in 90.0% and improved in 10.0% of the patients. Overall local tumor control was 96.0% (mean follow-up period; 37.4 ± 27.2 months). Neither patient age, previous surgery, or the period from the initial diagnosis to RRS showed a dependency on visual acuity before or after radiosurgery. RRS is a safe and effective treatment for the management of ONSM. Hypofractionation of radiosurgery in patients with preserved vision before CK treatment results in stable or improved vision

    Efficacy and safety of CyberKnife radiosurgery in elderly patients with brain metastases: A retrospective clinical evaluation

    Get PDF
    Background: Stereotactic radiosurgery (SRS) has been increasingly applied for up to 10 brain metastases instead of whole brain radiation therapy (WBRT) to achieve local tumor control while reducing neurotoxicity. Furthermore, brain-metastasis incidence is rising due to the increasing survival of patients with cancer. Our aim was to analyze the efficacy and safety of CyberKnife (CK) radiosurgery for elderly patients. Methods: We retrospectively identified all patients with brain metastases 65 65 years old treated with CK-SRS at our institution since 2011 and analyzed data of primary diseases, multimodality treatments, and local therapy effect based on imaging follow-up and treatment safety. Kaplan-Meier analysis for local progression-free interval and overall survival were performed. Results: We identified 97 patients (233 lesions) fulfilling the criteria at the first CK-SRS. The mean age was 73.2 \ub1 5.8 (range: 65.0-87.0) years. Overall, 13.4% of the patients were > 80 years old. The three most frequent primary cancers were lung (40.2%), kidney (22.7%), and malignant melanoma (15.5%). In 38.5% (47/122 treatments) multiple brain metastases were treated with the CK-SRS, with up to eight lesions in one session. The median planning target volume (PTV) was 1.05 (range: 0.01-19.80) cm3. A single fraction was applied in 92.3% of the lesions with a median prescription dose of 19 (range: 12-21) Gy. The estimated overall survivals at 3-, 6-, and 12 months after SRS were 79, 55, and 23%, respectively. The estimated local tumor progression-free intervals at 6-, 12-, 24-, 36-, and 72 months after SRS were 99.2, 89.0, 67.2, 64.6, and 64.6%, respectively. Older age and female sex were predictive factors of local progression. The Karnofsky performance score remained stable in 97.9% of the patients; only one patient developed a neurological deficit after SRS of a cerebellar lesion (ataxia, CTCAE Grade 2). Conclusions: SRS is a safe and efficient option for the treatment of elderly patients with brain metastases with good local control rates without the side effects of WBRT. Older age and female sex seem to be predictive factors of local progression. Prospective studies are warranted to clarify the role of SRS treatment for elderly patients

    Dysregulated Prefrontal Cortex Inhibition in Prepubescent and Adolescent Fragile X Mouse Model

    Get PDF
    Changes in excitation and inhibition are associated with the pathobiology of neurodevelopmental disorders of intellectual disability and autism and are widely described in Fragile X syndrome (FXS). In the prefrontal cortex (PFC), essential for cognitive processing, excitatory connectivity and plasticity are found altered in the FXS mouse model, however, little is known about the state of inhibition. To that end, we investigated GABAergic signaling in the Fragile X Mental Retardation 1 (FMR1) knock out (Fmr1-KO) mouse medial PFC (mPFC). We report changes at the molecular, and functional levels of inhibition at three (prepubescence) and six (adolescence) postnatal weeks. Functional changes were most prominent during early postnatal development, resulting in stronger inhibition, through increased synaptic inhibitory drive and amplitude, and reduction of inhibitory short-term synaptic depression. Noise analysis of prepubescent post-synaptic currents demonstrated an increased number of receptors opening during peak current in Fmr1-KO inhibitory synapses. During adolescence amplitudes and plasticity changes normalized, however, the inhibitory drive was now reduced in Fmr1-KO, while synaptic kinetics were prolonged. Finally, adolescent GABA(A) receptor subunit alpha 2 and GABA(B) receptor subtype B1 expression levels were different in Fmr1-KOs than WT littermate controls. Together these results extend the degree of synaptic GABAergic alterations in FXS, now to the mPFC of Fmr1-KO mice, a behaviourally relevant brain region in neurodevelopmental disorder pathology

    Establishment and validation of cyberknife irradiation in a syngeneic glioblastoma mouse model

    Get PDF
    CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a single dose of 20 Gy after 15 days of tumor growth in a syngeneic glioblastoma-mouse model. Exact positioning was ensured using a custom-made, non-invasive, and trackable frame. One superimposed target volume for the CK-SRS planning was created from the fused tumor volumes obtained from MRIs prior to irradiation. Dose calculation and delivery were planned using a single-reference CT scan. Six days after irradiation, tumor volumes were measured using MRI scans, and radiobiological effects were assessed using immunofluorescence staining. We found that CK-SRS treatment reduced tumor volume by approximately 75%, impaired cell proliferation, diminished tumor vasculature, and increased immune response. The accuracy of the delivered dose was demonstrated by staining of DNA double-strand breaks in accordance with the planned dose distribution. Overall, we confirmed that our proposed setup enables the precise irradiation of intracranial tumors in mice using only one reference CT and superimposed MRI volumes. Thus, our proposed mouse model for reproducible CK-SRS can be used to investigate radiobiological effects and develop novel therapeutic approaches

    Factors affecting outcome in frameless non-isocentric stereotactic radiosurgery for trigeminal neuralgia: A multicentric cohort study

    Get PDF
    Background: Stereotactic radiosurgery (SRS) is an effective treatment for trigeminal neuralgia (TN). Nevertheless, a proportion of patients will experience recurrence and treatment-related sensory disturbances. In order to evaluate the predictors of efficacy and safety of image-guided non-isocentric radiosurgery, we analyzed the impact of trigeminal nerve volume and the nerve dose/volume relationship, together with relevant clinical characteristics. Methods: Two-hundred and ninety-six procedures were performed on 262 patients at three centers. In 17 patients the TN was secondary to multiple sclerosis (MS). Trigeminal pain and sensory disturbances were classified according to the Barrow Neurological Institute (BNI) scale. Pain-free-intervals were investigated using Kaplan Meier analyses. Univariate and multivariate Cox regression analyses were performed to identify predictors. Results: The median follow-up period was 38 months, median maximal dose 72.4 Gy, median target nerve volume 25 mm3, and median prescription dose 60 Gy. Pain control rate (BNI I-III) at 6, 12, 24, 36, 48, and 60 months were 96.8, 90.9, 84.2, 81.4, 74.2, and 71.2%, respectively. Overall, 18% of patients developed sensory disturbances. Patients with volume 65 30 mm3 were more likely to maintain pain relief (p = 0.031), and low integral dose (< 1.4 mJ) tended to be associated with more pain recurrence than intermediate (1.4-2.7 mJ) or high integral dose (> 2.7 mJ; low vs. intermediate: log-rank test, \u3c72 = 5.02, p = 0.019; low vs. high: log-rank test, \u3c72 = 6.026, p = 0.014). MS, integral dose, and mean dose were the factors associated with pain recurrence, while re-irradiation and MS were predictors for sensory disturbance in the multivariate analysis. Conclusions: The dose to nerve volume ratio is predictive of pain recurrence in TN, and re-irradiation has a major impact on the development of sensory disturbances after non-isocentric SRS. Interestingly, the integral dose may differ significantly in treatments using apparently similar dose and volume constraints

    Human Synapses Show a Wide Temporal Window for Spike-Timing-Dependent Plasticity

    Get PDF
    Throughout our lifetime, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. Synapses can bi-directionally alter strength and the magnitude and sign depend on the millisecond timing of presynaptic and postsynaptic action potential firing. Recent findings on laboratory animals have shown that neurons can show a variety of temporal windows for spike-timing-dependent plasticity (STDP). It is unknown what synaptic learning rules exist in human synapses and whether similar temporal windows for STDP at synapses hold true for the human brain. Here, we directly tested in human slices cut from hippocampal tissue removed for surgical treatment of deeper brain structures in drug-resistant epilepsy patients, whether adult human synapses can change strength in response to millisecond timing of pre- and postsynaptic firing. We find that adult human hippocampal synapses can alter synapse strength in response to timed pre- and postsynaptic activity. In contrast to rodent hippocampal synapses, the sign of plasticity does not sharply switch around 0-ms timing. Instead, both positive timing intervals, in which presynaptic firing preceded the postsynaptic action potential, and negative timing intervals, in which postsynaptic firing preceded presynaptic activity down to −80 ms, increase synapse strength (tLTP). Negative timing intervals between −80 to −130 ms induce a lasting reduction of synapse strength (tLTD). Thus, similar to rodent synapses, adult human synapses can show spike-timing-dependent changes in strength. The timing rules of STDP in human hippocampus, however, seem to differ from rodent hippocampus, and suggest a less strict interpretation of Hebb's predictions

    Defining Treatment‐Related Adverse Effects in Patients with Glioma: Distinctive Features of Pseudoprogression and Treatment‐Induced Necrosis

    Get PDF
    Background: Pseudoprogression (PP) and treatment‐induced brain tissue necrosis (TN) are challenging cancer treatment–related effects. Both phenomena remain insufficiently defined; differentiation from recurrent disease frequently necessitates tissue biopsy. We here characterize distinctive features of PP and TN to facilitate noninvasive diagnosis and clinical management. Materials and Methods: Patients with glioma and confirmed PP (defined as appearance 5 months after RT) were retrospectively compared using clinical, radiographic, and histopathological data. Each imaging event/lesion (region of interest [ROI]) diagnosed as PP or TN was longitudinally evaluated by serial imaging. Results: We identified 64 cases of mostly (80%) biopsy‐confirmed PP (n = 27) and TN (n = 37), comprising 137 ROIs in total. Median time of onset for PP and TN was 1 and 11 months after RT, respectively. Clinically, PP occurred more frequently during active antineoplastic treatment, necessitated more steroid‐based interventions, and was associated with glioblastoma (81 vs. 40%), fewer IDH1 mutations, and shorter median overall survival. Radiographically, TN lesions often initially manifested periventricularly (n = 22/37; 60%), were more numerous (median, 2 vs. 1 ROIs), and contained fewer malignant elements upon biopsy. By contrast, PP predominantly developed around the tumor resection cavity as a non‐nodular, ring‐like enhancing structure. Both PP and TN lesions almost exclusively developed in the main prior radiation field. Presence of either condition appeared to be associated with above‐average overall survival. Conclusion: PP and TN occur in clinically distinct patient populations and exhibit differences in spatial radiographic pattern. Increased familiarity with both conditions and their unique features will improve patient management and may avoid unnecessary surgical procedures. Implications for Practice: Pseudoprogression (PP) and treatment‐induced brain tissue necrosis (TN) are challenging treatment‐related effects mimicking tumor progression in patients with brain cancer. Affected patients frequently require surgery to guide management. PP and TN remain arbitrarily defined and insufficiently characterized. Lack of clear diagnostic criteria compromises treatment and may adversely affect outcome interpretation in clinical trials. The present findings in a cohort of patients with glioma with PP/TN suggest that both phenomena exhibit unique clinical and imaging characteristics, manifest in different patient populations, and should be classified as distinct clinical conditions. Increased familiarity with PP and TN key features may guide clinicians toward timely noninvasive diagnosis, circumvent potentially unnecessary surgical procedures, and improve response assessment in neuro‐oncology

    Treatment Response Assessment in IDH-Mutant Glioma Patients by Noninvasive 3D Functional Spectroscopic Mapping of 2-Hydroxyglutarate

    Get PDF
    Purpose: Measurements of objective response rates are critical to evaluate new glioma therapies. The hallmark metabolic alteration in gliomas with mutant isocitrate dehydrogenase (IDH) is the overproduction of oncometabolite 2-hydroxyglutarate (2HG), which plays a key role in malignant transformation. 2HG represents an ideal biomarker to probe treatment response in IDH-mutant glioma patients, and we hypothesized a decrease in 2HG levels would be measureable by in vivo magnetic resonance spectroscopy (MRS) as a result of antitumor therapy. Experimental Design: We report a prospective longitudinal imaging study performed in 25 IDH-mutant glioma patients receiving adjuvant radiation and chemotherapy. A newly developed 3D MRS imaging was used to noninvasively image 2HG. Paired Student t test was used to compare pre- and posttreatment tumor 2HG values. Test-retest measurements were performed to determine the threshold for 2HG functional spectroscopic maps (fSM). Univariate and multivariate regression were performed to correlate 2HG changes with Karnofsky performance score (KPS). Results: We found that mean 2HG (2HG/Cre) levels decreased significantly (median=48.1%; 95% confidence interval=27.3%-56.5%; P=0.007) in the posttreatment scan. The volume of decreased 2HG correlates (R2=0.88, P=0.002) with clinical status evaluated by KPS. Conclusions: We demonstrate that dynamic measurements of 2HG are feasible by 3D fSM, and the decrease of 2HG levels can monitor treatment response in patients with IDH-mutant gliomas. Our results indicate that quantitative in vivo 2HG imaging maybe used for precision medicine and early response assessment in clinical trials of therapies targeting IDH-mutant gliomas
    corecore