1,040 research outputs found

    Maximize our missions Mui tsai, missionaries and material representation

    Full text link
    This study sheds light on the contributions of American Protestant missionaries in parlaying their experiences gleaned from overseas Chinese assignments in establishing domestic mission programs in America aimed at saving Chinese girls. In doing so, female missionaries built institutions and launched social programs that used the mui tsai (Chinese domestic servants), their experiences, and their transformation from heathen to Christian as a material representation of the success and necessity of domestic and overseas Chinese missionary ventures. In doing so, missionary women constructed national and transnational networks armed with the goal of maximizing their missions and Christianizing China. Although this study primarily analyzes Presbyterian and Methodist Episcopalian female-operated organizations, in the city of San Francisco---there is no question that many Protestant denominations followed the same pattern in countless American cities from 1870 to 1920

    CoproductMV-Algebras, Nonstandard Reals, and Riesz Spaces

    Get PDF
    AbstractUp to categorical equivalence,MV-algebras are unit intervals of abelian lattice-ordered groups (for short,l-groups) with strong unit. While the property of being a strong unit is not even definable in first-order logic,MV-algebras are definable by a few simple equations. Accordingly, such notions as ideals and coproducts are definable for anyMV-algebraAas particular cases of the general algebraic notions. The radical RadAis the intersection of all maximal ideals ofA. AnMV-algebraAis said to be local iff it has a unique maximal ideal. Then, by Hoelder's theorem, the quotientA/RadAis isomorphic to a subalgebra of the real unit interval [0,1]. Using nonstandard real numbers we give a concrete representation of those totally orderedMV-algebrasAwhich are isomorphic to the coproduct ofA/RadAand 〈RadA〉, the latter denoting the subalgebra ofAgenerated by its radical. As an application, using several categorical equivalences we describe theMV-algebraic counterparts of Riesz spaces, also known as vector lattices

    The environmental impacts and the carbon intensity of geothermal energy: A case study on the Hellisheiði plant

    Get PDF
    Geothermal energy, alongside other low-carbon and renewable energies, is set to play a key role in decarbonising the power generation industry to meet the Paris Agreement goal. Thus far the majority of Life Cycle Assessment (LCA) studies focused on enhanced geothermal plants. However, conventional geothermal plants that harness hydrothermal reservoirs dominate the production of electricity from geothermal energy worldwide. This article focuses on Hellisheiði, a combined heat and power double flash geothermal plant located in Iceland, with an installed capacity of 303.3 MW of electricity and 133 MW of hot water. The study has a twofold goal: (i) identify hot spots in the life cycle and, where possible, suggest improvements, and (ii) understand the potential of geothermal energy to decarbonise the power generation industry. First, a detailed LCA study has been performed on Hellisheiði, with cradle-to-grave system boundaries and detailed site-specific data obtained from the literature. The analysis identifies consumption of diesel for drilling and use of steel for wells casing and construction of the power plant as the main hot spots. Second, carbon intensities of electricity production for various possible configurations of the Hellisheiði power plant (including single flash, and power-only production) have been compared with those of other geothermal plants and other energy sources. Different allocation procedures have been used to allocate impacts between electricity and hot water where necessary, and Monte Carlo simulations have been used to estimate uncertainties of Hellisheiði's carbon intensities. The comparison shows that the carbon intensity of Hellisheiði is in the range of 15–24 g CO2-eq./kWh, which is similar to those of binary cycle geothermal plants, solar (photovoltaic) and hydropower, lower than other geothermal technologies and fossil-based technologies, and higher than nuclear and onshore wind

    Data on the environmental impacts of the Hellisheiði geothermal plant and on the carbon intensity of geothermal energy and other energy technologies

    Get PDF
    This data article is related to the research article “The environmental impacts and the carbon intensity of geothermal energy: A case study on the Hellisheiði plant”. The article reports numerical values of the results of the Life Cycle Assessment (LCA) study, which are reported only graphically and in an aggregated form in the main article. Data include normalised impacts, unaggregated environmental impacts of each life-cycle phase and activity in the foreground system, and results of Monte Carlo simulations. The article also includes data on the carbon intensity of other geothermal studies and alternative energy technologies, which were used for comparison in the associated research article

    Second-Harmonic Generation in Silicon Nitride Ring Resonators

    Full text link
    The emerging field of silicon photonics seeks to unify the high bandwidth of optical communications with CMOS microelectronic circuits. Many components have been demonstrated for on-chip optical communications, including those that utilize the nonlinear optical properties of silicon[1, 2], silicon dioxide[3, 4] and silicon nitride[5, 6]. Processes such as second harmonic generation, which are enabled by the second-order susceptibility, have not been developed since the bulk χ(2)\chi^{(2)} vanishes in these centrosymmetric CMOS materials. Generating the lowest-order nonlinearity would open the window to a new array of CMOS-compatible optical devices capable of nonlinear functionalities not achievable with the?χ(3)\chi^{(3)} response such as electro-optic modulation, sum frequency up-conversion, and difference frequency generation. Here we demonstrate second harmonic (SH) generation in CMOS compatible integrated silicon nitride (Si3N4) waveguides. The χ(2)\chi^{(2)} response is induced in the centrosymmetric material by using the nanoscale structure to break the bulk symmetry. We use a high quality factor Q ring resonator cavity to enhance the efficiency of the nonlinear optical process and detect SH output with milliwatt input powers.Comment: 4 pages, 3 figure

    Can the use of captured CO2 lower the environmental impacts of formate production?

    Get PDF
    The majority of bulk chemicals (e.g. olefins and alcohols) are organic compounds that are almost exclusively produced from fossil feedstocks such as natural gas. Utilisation of carbon dioxide captured from anthropogenic sources, which are both inexpensive and abundantly available, represents an alternative pathway that is drawing increasing attention, mainly for its potential to decreasing emissions of greenhouse gases and resource depletion of chemicals production. Notably, carbon utilisation does not represent an approach to CO2 mitigation because it only delays its emissions rather than removing it over a long timescale; hence, the relevant question that we aim to address is: "Can captured CO2 be used as feedstock to reduce the environmental impacts of chemicals' production?". As a case study, this work focuses on the production of formate and presents a prospective comparative life cycle assessment (LCA) between the conventional fossil-based pathway and an innovative, CO2-based process, that involves the electro-catalytic reduction of CO2 using an ionic liquid as solvent. CO2 is assumed to originate from a natural gas-fired power plant and captured after combustion, through a conventional monoethanolamine absorption system. Ionic liquids are used to enanche the reduction of CO2 and its conversion to formate. The study adopts a cradle-to-gate perspective and analyses multiple impact categories including, but not limited to, global warming and resources depletion

    Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories

    Get PDF
    Equilibrium formally can be represented as an ensemble of uncoupled systems undergoing unbiased dynamics in which detailed balance is maintained. Many non-equilibrium processes can be described by suitable subsets of the equilibrium ensemble. Here, we employ the "weighted ensemble" (WE) simulation protocol [Huber and Kim, Biophys. J., 1996] to generate equilibrium trajectory ensembles and extract non-equilibrium subsets for computing kinetic quantities. States do not need to be chosen in advance. The procedure formally allows estimation of kinetic rates between arbitrary states chosen after the simulation, along with their equilibrium populations. We also describe a related history-dependent matrix procedure for estimating equilibrium and non-equilibrium observables when phase space has been divided into arbitrary non-Markovian regions, whether in WE or ordinary simulation. In this proof-of-principle study, these methods are successfully applied and validated on two molecular systems: explicitly solvated methane association and the implicitly solvated Ala4 peptide. We comment on challenges remaining in WE calculations

    The life-cycle environmental performance of producing formate via electrochemical reduction of CO_{2} in ionic liquid

    Get PDF
    Carbon capture and utilisation provide a means to mitigate climate change caused by anthropogenic greenhouse gas emissions by delaying carbon emissions via temporary storage in goods. This article presents a comprehensive Life Cycle Assessment (LCA) study of a novel process that generates formate via electrochemical reduction of CO_{2} in ionic liquid. We performed a scenario analysis, covering uncertain parameters like the recycling rate of unreacted reagents and the market price of CO_{2}, and compared the environmental performance of the carbon utilisation system with that of the conventional process, which relies on fossil sources. Inventory data is obtained from a mix of literature sources and commercial LCA databases. Our analysis indicates that (i) the system needs to attain a 99.9% recycling rate to be competitive with the conventional process; (ii) a future negative market price of CO_{2} would substantially reduce the environmental impacts associated with formate; (iii) there are significant environmental trade-offs between the carbon utilisation system and the conventional process, with the former outperforming the latter in 6/8 out of the 14 impact categories investigated. It should be noted that our results are conservative because inventory data for the electrochemical reduction process is obtained from laboratory experiments

    Reprocessing vs direct disposal of used nuclear fuels: The environmental impacts of future scenarios for the UK

    Get PDF
    The UK recently switched from a “nominal” twice-through cycle - whereby used nuclear fuels were reprocessed, but uranium and plutonium were not routinely reintroduced in the fuel cycle – to a once-through cycle, where used nuclear fuels are stored pending disposal. However, it is also the current strategy to keep other options open, including a twice-through cycle based on a different chemical separation process from the conventional PUREX. This article presents a comprehensive Life Cycle Assessment study of future scenarios for the back-end of the UK nuclear fuel cycle that aims at informing policy- and decision-makers. The study considers the direct disposal approach and four reprocessing scenarios envisaging different strategies for disposal and/or reuse of reprocessed uranium and plutonium, and adopts a consequential approach including only short-term effects. These primarily represent reductions in demand for uranium mining due to recycling of uranium and plutonium, and are modelled upon identification of a marginal technology. Several marginal technologies are explored because of the uncertainty regarding the actual response of the market. Results of the study show that recycling of uranium, but especially of plutonium is of paramount importance because of the avoided burdens associated with production of nuclear fuel from mined uranium. The reprocessing scenarios envisaging reprocessing of used nuclear fuels and recycling of both plutonium and uranium represent the most favourable options. The direct disposal approach may be advantageous only in terms of radiological impacts depending on the marginal technology chosen
    corecore