Can the use of captured CO2 lower the environmental impacts of formate production?

Abstract

The majority of bulk chemicals (e.g. olefins and alcohols) are organic compounds that are almost exclusively produced from fossil feedstocks such as natural gas. Utilisation of carbon dioxide captured from anthropogenic sources, which are both inexpensive and abundantly available, represents an alternative pathway that is drawing increasing attention, mainly for its potential to decreasing emissions of greenhouse gases and resource depletion of chemicals production. Notably, carbon utilisation does not represent an approach to CO2 mitigation because it only delays its emissions rather than removing it over a long timescale; hence, the relevant question that we aim to address is: "Can captured CO2 be used as feedstock to reduce the environmental impacts of chemicals' production?". As a case study, this work focuses on the production of formate and presents a prospective comparative life cycle assessment (LCA) between the conventional fossil-based pathway and an innovative, CO2-based process, that involves the electro-catalytic reduction of CO2 using an ionic liquid as solvent. CO2 is assumed to originate from a natural gas-fired power plant and captured after combustion, through a conventional monoethanolamine absorption system. Ionic liquids are used to enanche the reduction of CO2 and its conversion to formate. The study adopts a cradle-to-gate perspective and analyses multiple impact categories including, but not limited to, global warming and resources depletion

    Similar works