4,322 research outputs found
UHE nuclei propagation and the interpretation of the ankle in the cosmic-ray spectrum
We consider the stochastic propagation of high-energy protons and nuclei in
the cosmological microwave and infrared backgrounds, using revised photonuclear
cross-sections and following primary and secondary nuclei in the full 2D
nuclear chart. We confirm earlier results showing that the high-energy data can
be fit with a pure proton extragalactic cosmic ray (EGCR) component if the
source spectrum is \propto E^{-2.6}. In this case the ankle in the CR spectrum
may be interpreted as a pair-production dip associated with the propagation. We
show that when heavier nuclei are included in the source with a composition
similar to that of Galactic cosmic-rays (GCRs), the pair-production dip is not
present unless the proton fraction is higher than 85%. In the mixed composition
case, the ankle recovers the past interpretation as the transition from GCRs to
EGCRs and the highest energy data can be explained by a harder source spectrum
\propto E^{-2.2} - E^{-2.3}, reminiscent of relativistic shock acceleration
predictions, and in good agreement with the GCR data at low-energy and holistic
scenarios.Comment: 4 pages, 4 figures, submitted to A&A Letters (minor changes, two
figures replaced, two references added
Field-induced axion emission via process in plasma
The annihilation into axion is investigated in a plasma and
an external magnetic field. This process via a plasmon intermediate state has a
resonant character at a particular energy of the emitted axion. The emissivity
by is compared with the axion cyclotron emissivity.Comment: 8 pages, latex, 4 PS figure
The moduli problem at the perturbative level
Moduli fields generically produce strong dark matter -- radiation and baryon
-- radiation isocurvature perturbations through their decay if they remain
light during inflation. We show that existing upper bounds on the magnitude of
such fluctuations can thus be translated into stringent constraints on the
moduli parameter space m_\sigma (modulus mass) -- \sigma_{inf} (modulus vacuum
expectation value at the end of inflation). These constraints are complementary
to previously existing bounds so that the moduli problem becomes worse at the
perturbative level. In particular, if the inflationary scale H_{inf}~10^{13}
GeV, particle physics scenarios which predict high moduli masses m_\sigma >
10-100 TeV are plagued by the perturbative moduli problem, even though they
evade big-bang nucleosynthesis constraints.Comment: 4 pages, 3 figures (revtex) -- v2: an important correction on the
amplitude/transfer of isocurvature modes at the end of inflation, typos
corrected, references added, basic result unchange
Fermi Acceleration at relativistic Shocks
International audienceAfter a successful development of theoretical and numerical works on Fermi acceleration at relativistic shocks, some difficulties recently raised with the scattering issue, a crucial aspect of the process. Most pioneering works were developed assuming the scattering off magnetic fluctuations as given. Even in that case, when a mean field is considered, its orientation is mostly perpendicular to the shock normal in the front frame, and this tends to quench the scattering process. Solving this difficulty leads to address the issue of the generation of very intense magnetic fluctuations at short wave lengths. The relativistic motion of the shock front let the cosmic rays to visit upstream during a very short time only, making this generation of magnetic fluctuations very challenging. Anyway there is some hope to solve the problem. Thanks to a recent work by Spitkovsky (2008) \cite{AS}, we know that the process works without any mean field and now we have to investigate up to which intensity the mean field can be amplified for allowing Fermi process with appropriate fast instabilities. In this presentation, the collisionless shock structure in relativistic regime is sketched, the scattering issue is presented, and the instabilities that can provide the expected magnetic field amplification are presented as well. Although there exists observational evidence that particles are accelerated in relativistic flows and are distributed according to a power law suggesting a Fermi process, the drastic conditions for Fermi process to work are not always clearly fulfilled
Constraints on cosmic-ray efficiency in the supernova remnant RCW 86 using multi-wavelength observations
Several young supernova remnants (SNRs) have recently been detected in the
high-energy and very-high-energy gamma-ray domains. As exemplified by RX
J1713.7-3946, the nature of this emission has been hotly debated, and direct
evidence for the efficient acceleration of cosmic-ray protons at the SNR shocks
still remains elusive. We analyzed more than 40 months of data acquired by the
Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the
HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE
gamma-rays) information about the broadband nonthermal emission from RCW 86.
For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas
Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional
Counter Array (PCA). Beyond the expected Galactic diffuse background, no
significant gamma-ray emission in the direction of RCW 86 is detected in any of
the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the
derived HE upper limits together with the HESS measurements in the VHE domain
can only be accommodated by a spectral index Gamma <= 1.8, i.e. a value
in-between the standard (test-particle) index and the asymptotic limit of
theoretical particle spectra in the case of strongly modified shocks. The
interpretation of the gamma-ray emission by inverse Compton scattering of high
energy electrons reproduces the multi-wavelength data using a reasonable value
for the average magnetic field of 15-25 muG. For these two scenarios, we
assessed the level of acceleration efficiency. We discuss these results in the
light of existing estimates of the magnetic field strength, the effective
density and the acceleration efficiency in RCW 86.Comment: Accepted for publication in A&A; 10 pages and 4 figure
Fermi Detection of the Pulsar Wind Nebula HESS J1640-465
We present observations of HESS J1640-465 with the Fermi-LAT. The source is
detected with high confidence as an emitter of high-energy gamma-rays. The
spectrum lacks any evidence for the characteristic cutoff associated with
emission from pulsars, indicating that the emission arises primarily from the
pulsar wind nebula. Broadband modeling implies an evolved nebula with a low
magnetic field resulting in a high gamma-ray to X-ray flux ratio. The Fermi
emission exceeds predictions of the broadband model, and has a steeper
spectrum, possibly resulting from a distinct excess of low energy electrons
similar to what is inferred for both the Vela X and Crab pulsar wind nebulae.Comment: 6 pages, 5 figures, accepted for publication in Ap
Trans-Planckian Dark Energy?
It has recently been proposed by Mersini et al. 01, Bastero-Gil and Mersini
02 that the dark energy could be attributed to the cosmological properties of a
scalar field with a non-standard dispersion relation that decreases
exponentially at wave-numbers larger than Planck scale (k_phys > M_Planck). In
this scenario, the energy density stored in the modes of trans-Planckian
wave-numbers but sub-Hubble frequencies produced by amplification of the vacuum
quantum fluctuations would account naturally for the dark energy. The present
article examines this model in detail and shows step by step that it does not
work. In particular, we show that this model cannot make definite predictions
since there is no well-defined vacuum state in the region of wave-numbers
considered, hence the initial data cannot be specified unambiguously. We also
show that for most choices of initial data this scenario implies the production
of a large amount of energy density (of order M_Planck^4) for modes with
momenta of order M_Planck, far in excess of the background energy density. We
evaluate the amount of fine-tuning in the initial data necessary to avoid this
back-reaction problem and find it is of order H/M_Planck. We also argue that
the equation of state of the trans-Planckian modes is not vacuum-like.
Therefore this model does not provide a suitable explanation for the dark
energy.Comment: RevTeX - 15 pages, 7 figures: final version to appear in PRD, minor
changes, 1 figure adde
- âŠ