3,534 research outputs found

    Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites

    Full text link
    We report a study of magnetic dynamics in multiferroic hexagonal manganite HoMnO3 by far-infrared spectroscopy. Low-temperature magnetic excitation spectrum of HoMnO3 consists of magnetic-dipole transitions of Ho ions within the crystal-field split J=8 manifold and of the triangular antiferromagnetic resonance of Mn ions. We determine the effective spin Hamiltonian for the Ho ion ground state. The magnetic-field splitting of the Mn antiferromagnetic resonance allows us to measure the magnetic exchange coupling between the rare-earth and Mn ions.Comment: accepted for publication in Physical Review Letter

    Optical characterization of Bi2_2Se3_3 in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material

    Full text link
    We present an infrared magneto-optical study of the highly thermoelectric narrow-gap semiconductor Bi2_2Se3_3. Far-infrared and mid-infrared (IR) reflectance and transmission measurements have been performed in magnetic fields oriented both parallel and perpendicular to the trigonal cc axis of this layered material, and supplemented with UV-visible ellipsometry to obtain the optical conductivity σ1(ω)\sigma_1(\omega). With lowering of temperature we observe narrowing of the Drude conductivity due to reduced quasiparticle scattering, as well as the increase in the absorption edge due to direct electronic transitions. Magnetic fields H∥cH \parallel c dramatically renormalize and asymmetrically broaden the strongest far-IR optical phonon, indicating interaction of the phonon with the continuum free-carrier spectrum and significant magnetoelectric coupling. For the perpendicular field orientation, electronic absorption is enhanced, and the plasma edge is slightly shifted to higher energies. In both cases the direct transition energy is softened in magnetic field.Comment: Final versio

    New Chairs Boot Camp

    Get PDF
    Many chairs take on their role without any formal training, which leads to frustration and dissatisfaction. We developed a boot camp to provide initial onboarding and orientation for new chairs. In this session, we provide an overview of our program, which focused on strategic enrollment management and department administration

    Reconsidering the interpretation of quantum oscillation experiments on underdoped YBa(2)Cu(3)O(6+x)

    Full text link
    On the basis of negative transport coefficients, it has been argued that the quantum oscillations observed in underdoped YBa(2)Cu(3)O(6+x) in high magnetic fields must be due to antinodal electron pockets. We point out a counter example in which electron-like transport in a hole-doped cuprate is associated with Fermi-arc states. We also present evidence that the antinodal gap in YBa(2)Cu(3)O(6+x) is robust to modest applied magnetic fields. We suggest that these observations should be taken into account when interpreting the results of the quantum oscillation experiments.Comment: 3+eps pages, 2 figures; final version, accepted in PRB, has new title, completely rewritten and simplified tex

    Two-Stage Rotational Disordering of a Molecular Crystal Surface: C\u3csub\u3e60\u3c/sub\u3e

    Get PDF
    We propose a two-stage mechanism for the rotational surface disordering phase transition of a molecular crystal, as realized in C60 fullerite. Our study, based on Monte Carlo simulations, uncovers the existence of a new intermediate regime, between a low-temperature ordered (2×2) state, and a high-temperature (1×1) disordered phase. In the intermediate regime there is partial disorder, strongest for a subset of particularly frustrated surface molecules. These concepts and calculations provide a coherent understanding of experimental observations, with possible extension to other molecular crystal surfaces

    Fabrication and Characterization of Topological Insulator Bi2_2Se3_3 Nanocrystals

    Full text link
    In the recently discovered class of materials known as topological insulators, the presence of strong spin-orbit coupling causes certain topological invariants in the bulk to differ from their values in vacuum. The sudden change of invariants at the interface results in metallic, time reversal invariant surface states whose properties are useful for applications in spintronics and quantum computation. However, a key challenge is to fabricate these materials on the nanoscale appropriate for devices and probing the surface. To this end we have produced 2 nm thick nanocrystals of the topological insulator Bi2_2Se3_3 via mechanical exfoliation. For crystals thinner than 10 nm we observe the emergence of an additional mode in the Raman spectrum. The emergent mode intensity together with the other results presented here provide a recipe for production and thickness characterization of Bi2_2Se3_3 nanocrystals.Comment: 4 pages, 3 figures (accepted for publication in Applied Physics Letters
    • …
    corecore