164 research outputs found

    Specific LTR-Retrotransposons Show Copy Number Variations between Wild and Cultivated Sunflowers

    Get PDF
    The relationship between variation of the repetitive component of the genome and domestication in plant species is not fully understood. In previous work, variations in the abundance and proximity to genes of long terminal repeats (LTR)-retrotransposons of sunflower (Helianthus annuus L.) were investigated by Illumina DNA sequencingtocompare cultivars and wild accessions. In this study, we annotated and characterized 22 specific retrotransposon families whose abundance varies between domesticated and wild genotypes. These families mostly belonged to the Chromovirus lineage of the Gypsy superfamily and were distributed overall chromosomes. They were also analyzed in respect to their proximity to genes. Genes close to retrotransposon were classified according to biochemical pathways, and differences between domesticated and wild genotypes are shown. These data suggest that structural variations related to retrotransposons might have occurred to produce phenotypic variation between wild and domesticated genotypes, possibly by affecting the expression of genes that lie close to inserted or deleted retrotransposons and belong to specific biochemical pathways as those involved in plant stress responses

    Gene expression in Rhizoglomus irregulare at two different time points of mycorrhiza establishment in Helianthus annuus roots, as revealed by RNA-seq analysis

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) play a fundamental role in plant growth and nutrition in natural and agricultural ecosystems. Despite the importance of such symbionts, the different developmental changes occurring during the AMF life cycle have not been fully elucidated at the molecular level. Here, the RNA-seq approach was used to investigate Rhizoglomus irregulare specific and common transcripts at two different time points of mycorrhizal establishment in Helianthus annuus in vivo. Four days after inoculation, transcripts related to cellular remodeling (actin and tubulin), cellular signaling (calmodulin, serine/threonine protein kinase, 14-3-3 protein, and calcium transporting ATPase), lipid metabolism (fatty acid desaturation, steroid hormone, and glycerophospholipid biosynthesis), and biosynthetic processes were detected. In addition to such transcripts, 16 days after inoculation, expressed genes linked to binding and catalytic activities; ion (K+, Ca2+, Fe2+, Zn2+, Mn2+, Pi, ammonia), sugar, and lipid transport; and those involved in vacuolar polyphosphate accumulation were found. Knowledge of transcriptomic changes required for symbiosis establishment and performance is of great importance to understand the functional role of AMF symbionts in food crop nutrition and health, and in plant diversity in natural ecosystems

    How an ancient, salt-tolerant fruit crop, Ficus carica L., copes with salinity: a transcriptome analysis

    Get PDF
    Although Ficus carica L. (fig) is one of the most resistant fruit tree species to salinity, no comprehensive studies are currently available on its molecular responses to salinity. Here we report a transcriptome analysis of F. carica cv. Dottato exposed to 100 mM sodium chloride for 7 weeks, where RNA-seq analysis was performed on leaf samples at 24 and 48 days after the beginning of salinization; a genomederived fig transcriptome was used as a reference. At day 24, 224 transcripts were significantly upregulated and 585 were down-regulated, while at day 48, 409 genes were activated and 285 genes were repressed. Relatively small transcriptome changes were observed after 24 days of salt treatment, showing that fig plants initially tolerate salt stress. However, after an early down-regulation of some cell functions, major transcriptome changes were observed after 48 days of salinity. Seven weeks of 100 mM NaCl dramatically changed the repertoire of expressed genes, leading to activation or reactivation of many cell functions. We also identified salt-regulated genes, some of which had not been previously reported to be involved in plant salinity responses. These genes could be potential targets for the selection of favourable genotypes, through breeding or biotechnology, to improve salt tolerance in fig or other crops

    Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots

    Get PDF
    Arbuscular mycorrhizal (AM) fungi are essential elements of soil fertility, plant nutrition and productivity, facilitating soil mineral nutrient uptake. Helianthus annuus is a non-model, widely cultivated species. Here we used an RNA-seq approach for evaluating gene expression variation at early and late stages of mycorrhizal establishment in sunflower roots colonized by the arbuscular fungus Rhizoglomus irregulare. mRNA was isolated from roots of plantlets at 4 and 16 days after inoculation with the fungus. cDNA libraries were built and sequenced with Illumina technology. Differential expression analysis was performed between control and inoculated plants. Overall 726 differentially expressed genes (DEGs) between inoculated and control plants were retrieved. The number of upregulated DEGs greatly exceeded the number of down-regulated DEGs and this difference increased in later stages of colonization. Several DEGs were specifically involved in known mycorrhizal processes, such as membrane transport, cell wall shaping, and other. We also found previously unidentified mycorrhizal-induced transcripts. The most important DEGs were carefully described in order to hypothesize their roles in AM symbiosis. Our data add a valuable contribution for deciphering biological processes related to beneficial fungi and plant symbiosis, adding an Asteraceae, non-model species for future comparative functional genomics studies

    Characterisation of LTR-Retrotransposons of Stevia rebaudiana and Their Use for the Analysis of Genetic Variability

    Get PDF
    Stevia rebaudiana is one of the most important crops belonging to the Asteraceae family. Stevia is cultivated all over the world as it represents a valid natural alternative to artificial sweeteners thanks to its leaves, which produce steviol glycosides that have high sweetening power and reduced caloric value. In this work, the stevia genome sequence was used to isolate and characterise full-length long-terminal repeat retrotransposons (LTR-REs), which account for more than half of the genome. The Gypsy retrotransposons were twice as abundant as the Copia ones. A disproportionate abundance of elements belonging to the Chromovirus/Tekay lineage was observed among the Gypsy elements. Only the SIRE and Angela lineages represented significant portions of the genome among the Copia elements. The dynamics with which LTR-REs colonised the stevia genome were also estimated; all isolated full-length elements turned out to be relatively young, with a proliferation peak around 1–2 million years ago. However, a different analysis conducted by comparing sequences encoding retrotranscriptase showed the occurrence of an older period in which there was a lot of LTR-RE proliferation. Finally, a group of isolated full-length elements belonging to the lineage Angela was used to analyse the genetic variability in 25 accessions of S. rebaudiana using the Inter-Retrotransposon Amplified Polymorphism (IRAP) protocol. The obtained fingerprints highlighted a high degree of genetic variability and were used to study the genomic structures of the different accessions. It was hypothesised that there are four ancestral subpopulations at the root of the analysed accessions, which all turned out to be admixed. Overall, these data may be useful for genome sequence annotations and for evaluating genetic variability in this species, which may be useful in stevia breeding

    Cultivar-specific transcriptome prediction and annotation in Ficus carica L.

    Get PDF
    The availability of transcriptomic data sequence is a key step for functional genomics studies. Recently, a repertoire of predicted genes of a Japanese cultivar of fig (Ficus carica L.) was released. Because of the great phenotypic variability that can be found in this species, we decided to study another fig genotype, the Italian cv. Dottato, in order to perform comparative studies between the two cultivars and extend the pan genome of this species. We isolated, sequenced and assembled fig genomic DNA from young fruits of cv. Dottato. Then, putative gene sequences were predicted and annotated. Finally, a comparison was performed between cvs. Dottato and Horaishi predicted transcriptomes. Our data provide a resource (available at the Sequence Read Archive database under SRP109082) to be used for functional genomics of fig, in order to fill the gap of knowledge still existing in this species concerning plant development, defense and adaptation to the environment

    Creedy, Jean Iris

    Get PDF
    The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus of senescent leaves. Although several studies have produced transcriptomic data on foliar senescence, just few works have attempted to explain differences in red and green leaves throughout ontogenesis. In this work, a transcriptomic approach was used on green and red leaves of Prunus cerasifera to unveil molecular differences from leaf maturity to senescence. Our analysis revealed a higher gene regulation in red leaves compared to green ones, during leaf transition. Most of the observed DEGs were shared and involved in transcription factor activities, senescing processes and cell wall remodelling. Significant differences were detected in cellular functions: genes related to photosystem I and II were highly down-regulated in the green genotype, whereas transcripts involved in flavonoid biosynthesis, such as UDP glucose-flavonoid-3-O-glucosyltransferase (UFGT) were exclusively up-regulated in red leaves. In addition, cellular functions involved in stress response (glutathione-S-transferase, Pathogen-Related) and sugar metabolism, such as three threalose-6-phosphate synthases, were activated in senescent red leaves. In conclusion, data suggests that P. cerasifera red genotypes can regulate a set of genes and molecular mechanisms that cope with senescence, promoting more advantages during leaf ontogenesis than compared to the green ones

    Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride

    Get PDF
    Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations

    The invasion history of Elodea canadensis and E. nuttallii (Hydrocharitaceae) in Italy from herbarium accessions, field records and historical literature

    Get PDF
    We analysed the invasion history of two North American macrophytes (Elodea canadensis and E. nuttallii) in Italy, through an accurate census of all available herbarium and field records, dating between 1850 and 2019, and a rich literature collection describing the initial introduction and naturalisation phase that supports the results obtained by the occurrence records. Elodea canadensis arrived in Italy before 1866 and had two invasion phases, between the 1890s and 1920s and between the 1990s and 2000s; E. nuttallii, probably arrived in the 1970s, started invading in 2000 and the invasion is still ongoing. Botanical gardens and fish farming played a crucial role in dispersal and naturalisation of both species. The current invasion range of both species is centred in northern Italy, with scattered occurrences of E. canadensis in central and southern regions. River Po represents a dispersal barrier to the Mediterranean region and a strategic monitoring site to prevent the invasion in the peninsula. The study detects differences in the niches of the two species during the introduction and naturalisation phase and a habitat switch occurred after 1980 in E. canadensis and after 2000 in E. nuttallii, during their expansion phases. For E. canadensis the switch corresponds to the second invasion round. Further research can clarify whether the second invasion round is due to confusion of the recently introduced E. nuttallii with E. canadensis, to a cryptic introduction of a new genotype, to post-introduction evolution, or just to an increased scientific interest in biological invasions
    • …
    corecore