114 research outputs found

    Spin-density fluctuations and the fluctuation-dissipation theorem in 3d ferromagnetic metals

    Get PDF
    Spatial and time scales of spin density fluctuations (SDF) were analyzed in 3d ferromagnets using ab initio linear response calculations of complete wavevector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDF are spread continuously over the entire Brillouin zone and while majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin wave contribution and a much larger high-energy component from more localized excitations. Using the fluctuation-dissipation theorem (FDT), the on-site spin correlator (SC) and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed

    Extending MGS-TES Temperature Retrievals in the Martian Atmosphere up to 90 Km: Retrieval Approach and Results

    Get PDF
    This paper describes a methodology for performing a temperature retrieval in the Martian atmosphere in the 50-90 km altitude range using spectrally integrated 15 micrometers C02 limb emissions measured by the Thermal Emission Spectrometer (TES), the thermal infrared spectrometer on board the Mars Global Surveyor (MGS). We demonstrate that temperature retrievals from limb observations in the 75-90 km altitude range require accounting for the non-local thermodynamic equilibrium (non-LTE) populations of the C02(v2) vibrational levels. Using the methodology described in the paper, we have retrieved approximately 1200 individual temperature profiles from MGS TES limb observations in the altitude range between 60 and 90 km. 0ur dataset of retrieved temperature profiles is available for download in supplemental materials of this paper. The temperature retrieval uncertainties are mainly caused by radiance noise, and are estimated to be about 2 K at 60 km and below, 4 K at 70 km, 7 K at 80 km, 10 K at 85 km, and 20 K at 90 km. We compare the retrieved profiles to Mars Climate Database temperature profiles and find good qualitative agreement. Quantitatively, our retrieved profiles are in general warmer and demonstrate strong variability with the following values for bias and standard deviations (in brackets) compared to the Martian Year 24 dataset of the Mars Climate Database: 6 (+/-20) K at 60 km, 7.5 (+/-25) K at 65 km, 9 (+/-27) K at 70 km, 9.5 (+/-27) K at 75 km, 10 (+/-28) K at 80 km, 11 (+/-29) K at 85 km, and 11.5 (+/-31) K at 90 km. Possible reasons for the positive temperature bias are discussed. carbon dioxide molecular vibration

    Validation of the Global Distribution of CO\u3csub\u3e2\u3c/sub\u3e Volume Mixing Ratio in the Mesosphere and Lower Thermosphere from SABER

    Get PDF
    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has been measuring the limb radiance in 10 broadband infrared channels over the altitude range from ~ 400 km to the Earth\u27s surface since 2002. The kinetic temperatures and CO2 volume mixing ratios (VMRs) in the mesosphere and lower thermosphere have been simultaneously retrieved using SABER limb radiances at 15 and 4.3 μm under nonlocal thermodynamic equilibrium (non-LTE) conditions. This paper presents results of a validation study of the SABER CO2 VMRs obtained with a two-channel, self-consistent temperature/CO2 retrieval algorithm. Results are based on comparisons with coincident CO2 measurements made by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and simulations using the Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM). The SABER CO2 VMRs are in agreement with ACE-FTS observations within reported systematic uncertainties from 65 to 110 km. The annual average SABER CO2 VMR falls off from a well-mixed value above ~80 km. Latitudinal and seasonal variations of CO2 VMRs are substantial. SABER observations and the SD-WACCM simulations are in overall agreement for CO2 seasonal variations, as well as global distributions in the mesosphere and lower thermosphere. Not surprisingly, the CO2 seasonal variation is shown to be driven by the general circulation, converging in the summer polar mesopause region and diverging in the winter polar mesopause region. Key Points Mean SABER CO2 distribution is validated against SD-WACCM and ACE-FTS data SABER and ACE-FTS mean CO2 VMR agree within 5% below 90 km up to 20% at 110 km SD-WACCM and SABER CO2 spatial and seasonal distribution show a good agreement. © 2015. American Geophysical Union

    Coligomerization of Styrene and a-Methylstyrene Catalyzed by y Zeolites

    Get PDF
    It is ascertained that during the interaction of styrene and -methylstyrene in the presence of cation and cation-decationated forms of zeolite Y the activity of zeolite catalysts increases in the following order: NiNaY CaNaY <LaNaY 0,5 NY <La Y <NiHY 0,96 Y. The product of reaction in the presence of cation forms of zeolite (NiNaY, CaNaY, LaNaY) is a mixture of low-molecular (n=2 - 4) and high-molecular oligomers (n=14). Oligomers with the degree of oligomerization 2 - 8 are formed in the presence of other zeolite samples. Zeolites 0,96 Y and NiHY allow to receive gomo - and codimers with selectivity 68-80%. The main product of codimerization is cyclic dimer 1,1 – dimethyl – 3-phenylindane
    • …
    corecore