277 research outputs found

    Theoretical study of dark resonances in micro-metric thin cells

    Full text link
    We investigate theoretically dark resonance spectroscopy for a dilute atomic vapor confined in a thin (micro-metric) cell. We identify the physical parameters characterizing the spectra and study their influence. We focus on a Hanle-type situation, with an optical irradiation under normal incidence and resonant with the atomic transition. The dark resonance spectrum is predicted to combine broad wings with a sharp maximum at line-center, that can be singled out when detecting a derivative of the dark resonance spectrum. This narrow signal derivative, shown to broaden only sub-linearly with the cell length, is a signature of the contribution of atoms slow enough to fly between the cell windows in a time as long as the characteristic ground state optical pumping time. We suggest that this dark resonance spectroscopy in micro-metric thin cells could be a suitable tool for probing the effective velocity distribution in the thin cell arising from the atomic desorption processes, and notably to identify the limiting factors affecting desorption under a grazing incidence.Comment: 12 pages, 11 figures theoretical articl

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review

    Spontaneous decay of an excited atom in an absorbing dielectric

    Get PDF
    Starting from the quantized version of Maxwell's equations for the electromagnetic field in an arbitrary linear Kramers-Kronig dielectric, spontaneous decay of the excited state of a two-level atom embedded in a dispersive and absorbing medium is studied and the decay rate is calculated. The calculations are performed for both the (Clausius-Mosotti) virtual cavity model and the (Glauber-Lewenstein) real cavity model. It is shown that owing to nonradiative decay associated with absorption the rate of spontaneous decay sensitively depends on the cavity radius when the atomic transition frequency approaches an absorption band of the medium. Only when the effect of absorption is fully disregarded, then the familiar local-field correction factors are recovered.Comment: 28 pages, 6 figures, typeset using RevTe

    Random Resonators and Prelocalized Modes in Disordered Dielectric Films

    Full text link
    Areal density of disorder-induced resonators with a high quality factor, Q≫1Q\gg 1, in a film with fluctuating refraction index is calculated theoretically. We demonstrate that for a given kl>1kl>1, where kk is the light wave vector, and ll is the transport mean free path, when {\em on average} the light propagation is diffusive, the likelihood for finding a random resonator increases dramatically with increasing the correlation radius of the disorder. Parameters of {\em most probable} resonators as functions of QQ and klkl are found.Comment: 6 pages including 2 figure

    General boundary conditions for the envelope function in multiband k.p model

    Full text link
    We have derived general boundary conditions (BC) for the multiband envelope functions (which do not contain spurious solutions) in semiconductor heterostructures with abrupt heterointerfaces. These BC require the conservation of the probability flux density normal to the interface and guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy independent and are characteristic properties of the interface. Calculations have been performed of the effect of the general BC on the electron energy levels in a potential well with infinite potential barriers using a coupled two band model. The connection with other approaches to determining BC for the envelope function and to the spurious solution problem in the multiband k.p model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15 issue 200

    Mesoscopic Cooperative Emission From a Disordered System

    Full text link
    We study theoretically the cooperative light emission from a system of N≫1N\gg 1 classical oscillators confined within a volume with spatial scale, LL, much smaller than the radiation wavelength, λ0=2πc/ω0\lambda_0=2\pi c/\omega_0. We assume that the oscillators frequencies are randomly distributed around a central frequency, ω0\omega_0, with some characteristic width, Ω≪ω0\Omega\ll\omega_0. In the absence of disorder, that is Ω=0\Omega=0, the cooperative emission spectrum is composed of a narrow subradiant peak superimposed on a wide superradiant band. When Ω≠0\Omega\neq 0, we demonstrate that if NN is large enough, the subradiant peak is not simply broadened by the disorder but rather splits into a system of random narrow peaks. We estimate the spectral width of these peaks as a function of N,L,ΩN, L, \Omega, and λ0\lambda_0. We also estimate the amplitude of this mesoscopic structure in the emission spectrum.Comment: 25 pages including 6 figure

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit

    Monitoring, management, and outcome of hypotension in Intensive Care Unit patients, an international survey of the European Society of Intensive Care Medicine

    Get PDF
    INTRODUCTION: Hypotension in the ICU is common, yet management is challenging and variable. Insight in management by ICU physicians and nurses may improve patient care and guide future hypotension treatment trials and guidelines. METHODS: We conducted an international survey among ICU personnel to provide insight in monitoring, management, and perceived consequences of hypotension. RESULTS: Out of 1464 respondents, 1197 (81.7%) were included (928 physicians (77.5%) and 269 nurses (22.5%)). The majority indicated that hypotension is underdiagnosed (55.4%) and largely preventable (58.8%). Nurses are primarily in charge of monitoring changes in blood pressure, physicians are in charge of hypotension treatment. Balanced crystalloids, dobutamine, norepinephrine, and Trendelenburg position were the most frequently reported fluid, inotrope, vasopressor, and positional maneuver used to treat hypotension. Reported complications believed to be related to hypotension were AKI and myocardial injury. Most ICUs do not have a specific hypotension treatment guideline or protocol (70.6%), but the majority would like to have one in the future (58.1%). CONCLUSIONS: Both physicians and nurses report that hypotension in ICU patients is underdiagnosed, preventable, and believe that hypotension influences morbidity. Hypotension management is generally not protocolized, but the majority of respondents would like to have a specific hypotension management protocol

    Definition and incidence of hypotension in intensive care unit patients, an international survey of the European Society of Intensive Care Medicine

    Get PDF
    Introduction: Although hypotension in ICU patients is associated with adverse outcome, currently used definitions are unknown and no universally accepted definition exists. Methods: We conducted an international, peer-reviewed survey among ICU physicians and nurses to provide insight in currently used definitions, estimations of incidence, and duration of hypotension. Results: Out of 1394 respondents (1055 physicians (76%) and 339 nurses (24%)), 1207 (82%) completed the questionnaire. In all patient categories, hypotension definitions were predominantly based on an absolute MAP of 65 mmHg, except for the neuro(trauma) category (75 mmHg, p &lt; 0.001), without differences between answers from physicians and nurses. Hypotension incidence was estimated at 55%, and time per day spent in hypotension at 15%, both with nurses reporting higher percentages than physicians (estimated mean difference 5%, p = 0.01; and 4%, p &lt; 0.001). Conclusions: An absolute MAP threshold of 65 mmHg is most frequently used to define hypotension in ICU patients. In neuro(trauma) patients a higher threshold was reported. The majority of ICU patients are estimated to endure hypotension during their ICU admission for a considerable amount of time, with nurses reporting a higher estimated incidence and time spent in hypotension than physicians.</p

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe
    • …
    corecore