2,928 research outputs found

    Estimating stellar oscillation-related parameters and their uncertainties with the moment method

    Full text link
    The moment method is a well known mode identification technique in asteroseismology (where `mode' is to be understood in an astronomical rather than in a statistical sense), which uses a time series of the first 3 moments of a spectral line to estimate the discrete oscillation mode parameters l and m. The method, contrary to many other mode identification techniques, also provides estimates of other important continuous parameters such as the inclination angle alpha, and the rotational velocity v_e. We developed a statistical formalism for the moment method based on so-called generalized estimating equations (GEE). This formalism allows the estimation of the uncertainty of the continuous parameters taking into account that the different moments of a line profile are correlated and that the uncertainty of the observed moments also depends on the model parameters. Furthermore, we set up a procedure to take into account the mode uncertainty, i.e., the fact that often several modes (l,m) can adequately describe the data. We also introduce a new lack of fit function which works at least as well as a previous discriminant function, and which in addition allows us to identify the sign of the azimuthal order m. We applied our method to the star HD181558, using several numerical methods, from which we learned that numerically solving the estimating equations is an intensive task. We report on the numerical results, from which we gain insight in the statistical uncertainties of the physical parameters involved in the moment method.Comment: The electronic online version from the publisher can be found at http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2005.00487.

    The Guppy Effect as Interference

    Full text link
    People use conjunctions and disjunctions of concepts in ways that violate the rules of classical logic, such as the law of compositionality. Specifically, they overextend conjunctions of concepts, a phenomenon referred to as the Guppy Effect. We build on previous efforts to develop a quantum model that explains the Guppy Effect in terms of interference. Using a well-studied data set with 16 exemplars that exhibit the Guppy Effect, we developed a 17-dimensional complex Hilbert space H that models the data and demonstrates the relationship between overextension and interference. We view the interference effect as, not a logical fallacy on the conjunction, but a signal that out of the two constituent concepts, a new concept has emerged.Comment: 10 page

    Interpreting Quantum Particles as Conceptual Entities

    Full text link
    We elaborate an interpretation of quantum physics founded on the hypothesis that quantum particles are conceptual entities playing the role of communication vehicles between material entities composed of ordinary matter which function as memory structures for these quantum particles. We show in which way this new interpretation gives rise to a natural explanation for the quantum effects of interference and entanglement by analyzing how interference and entanglement emerge for the case of human concepts. We put forward a scheme to derive a metric based on similarity as a predecessor for the structure of 'space, time, momentum, energy' and 'quantum particles interacting with ordinary matter' underlying standard quantum physics, within the new interpretation, and making use of aspects of traditional quantum axiomatics. More specifically, we analyze how the effect of non-locality arises as a consequence of the confrontation of such an emerging metric type of structure and the remaining presence of the basic conceptual structure on the fundamental level, with the potential of being revealed in specific situations.Comment: 19 pages, 1 figur

    Quantum Experimental Data in Psychology and Economics

    Full text link
    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the 'disjunction effect' in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage's Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. For this reason our analysis puts forward a strong argument in favor of the validity of using a quantum formalism for modeling the considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure

    What is Quantum? Unifying Its Micro-Physical and Structural Appearance

    Full text link
    We can recognize two modes in which 'quantum appears' in macro domains: (i) a 'micro-physical appearance', where quantum laws are assumed to be universal and they are transferred from the micro to the macro level if suitable 'quantum coherence' conditions (e.g., very low temperatures) are realized, (ii) a 'structural appearance', where no hypothesis is made on the validity of quantum laws at a micro level, while genuine quantum aspects are detected at a structural-modeling level. In this paper, we inquire into the connections between the two appearances. We put forward the explanatory hypothesis that, 'the appearance of quantum in both cases' is due to 'the existence of a specific form of organisation, which has the capacity to cope with random perturbations that would destroy this organisation when not coped with'. We analyse how 'organisation of matter', 'organisation of life', and 'organisation of culture', play this role each in their specific domain of application, point out the importance of evolution in this respect, and put forward how our analysis sheds new light on 'what quantum is'.Comment: 10 page

    How to play two-players restricted quantum games with 10 cards

    Full text link
    We show that it is perfectly possible to play 'restricted' two-players, two-strategies quantum games proposed originally by Marinatto and Weber having as the only equipment a pack of 10 cards. The 'quantum board' of such a model of these quantum games is an extreme simplification of 'macroscopic quantum machines' proposed by one of the authors in numerous papers that allow to simulate by macroscopic means various experiments performed on two entangled quantum objectsComment: 4 pages, 3 figure

    A Quantum-Conceptual Explanation of Violations of Expected Utility in Economics

    Get PDF
    The expected utility hypothesis is one of the building blocks of classical economic theory and founded on Savage's Sure-Thing Principle. It has been put forward, e.g. by situations such as the Allais and Ellsberg paradoxes, that real-life situations can violate Savage's Sure-Thing Principle and hence also expected utility. We analyze how this violation is connected to the presence of the 'disjunction effect' of decision theory and use our earlier study of this effect in concept theory to put forward an explanation of the violation of Savage's Sure-Thing Principle, namely the presence of 'quantum conceptual thought' next to 'classical logical thought' within a double layer structure of human thought during the decision process. Quantum conceptual thought can be modeled mathematically by the quantum mechanical formalism, which we illustrate by modeling the Hawaii problem situation, a well-known example of the disjunction effect, and we show how the dynamics in the Hawaii problem situation is generated by the whole conceptual landscape surrounding the decision situation.Comment: 9 pages, no figure

    Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory

    Full text link
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, ..., in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and individuality in the light of this new interpretation, and we put forward a specific explanation and understanding of these aspects. The basic hypothesis of our framework gives rise in a natural way to a Heisenberg uncertainty principle which introduces an understanding of the general situation of 'the one and the many' in quantum physics. A specific view on macro and micro different from the common one follows from the basic hypothesis and leads to an analysis of Schrodinger's Cat paradox and the measurement problem different from the existing ones. We reflect about the influence of this new quantum interpretation and explanatory framework on the global nature and evolutionary aspects of the world and human worldviews, and point out potential explanations for specific situations, such as the generation problem in particle physics, the confinement of quarks and the existence of dark matter.Comment: 45 pages, 10 figure

    Experimental Evidence for Quantum Structure in Cognition

    Full text link
    We proof a theorem that shows that a collection of experimental data of membership weights of items with respect to a pair of concepts and its conjunction cannot be modeled within a classical measure theoretic weight structure in case the experimental data contain the effect called overextension. Since the effect of overextension, analogue to the well-known guppy effect for concept combinations, is abundant in all experiments testing weights of items with respect to pairs of concepts and their conjunctions, our theorem constitutes a no-go theorem for classical measure structure for common data of membership weights of items with respect to concepts and their combinations. We put forward a simple geometric criterion that reveals the non classicality of the membership weight structure and use experimentally measured membership weights estimated by subjects in experiments to illustrate our geometrical criterion. The violation of the classical weight structure is similar to the violation of the well-known Bell inequalities studied in quantum mechanics, and hence suggests that the quantum formalism and hence the modeling by quantum membership weights can accomplish what classical membership weights cannot do.Comment: 12 pages, 3 figure

    Hidden measurements, hidden variables and the volume representation of transition probabilities

    Full text link
    We construct, for any finite dimension nn, a new hidden measurement model for quantum mechanics based on representing quantum transition probabilities by the volume of regions in projective Hilbert space. For n=2n=2 our model is equivalent to the Aerts sphere model and serves as a generalization of it for dimensions n≥3n \geq 3. We also show how to construct a hidden variables scheme based on hidden measurements and we discuss how joint distributions arise in our hidden variables scheme and their relationship with the results of Fine.Comment: 23 pages, 1 figur
    • …
    corecore