752 research outputs found

    Sign-symmetry of temperature structure functions

    Full text link
    New scalar structure functions with different sign-symmetry properties are defined. These structure functions possess different scaling exponents even when their order is the same. Their scaling properties are investigated for second and third orders, using data from high-Reynolds-number atmospheric boundary layer. It is only when structure functions with disparate sign-symmetry properties are compared can the extended self-similarity detect two different scaling ranges that may exist, as in the example of convective turbulence.Comment: 18 pages, 5 figures, accepted for publication in Physical Review

    Sick and tired: how molecular regulators of human sleep schedules and duration impact immune function.

    Get PDF
    Why do we need to sleep? What regulates when we sleep? And what dictates the number of hours we require? These are often viewed as three separate biological questions. Here, we propose they share molecular etiologies, whereby regulators of sleep schedules and sleep duration also govern the physiological purposes of sleep. To support our hypothesis, we review Mendelian human genetic variants sufficient to advance sleep-wake onset (PER2) and shorten sleep length (DEC2), and evaluate their emerging roles in immune responses that may rely on a sound night of slumber

    Cascade time-scales for energy and helicity in homogeneous isotropic turbulence

    Full text link
    We extend the Kolmogorov phenomenology for the scaling of energy spectra in high-Reynolds number turbulence, to explicitly include the effect of helicity. There exists a time-scale τH\tau_H for helicity transfer in homogeneous, isotropic turbulence with helicity. We arrive at this timescale using the phenomenological arguments used by Kraichnan to derive the timescale τE\tau_E for energy transfer (J. Fluid Mech. {\bf 47}, 525--535 (1971)). We show that in general τH\tau_H may not be neglected compared to τE\tau_E, even for rather low relative helicity. We then deduce an inertial range joint cascade of energy and helicity in which the dynamics are dominated by τE\tau_E in the low wavenumbers with both energy and helicity spectra scaling as k5/3k^{-5/3}; and by τH\tau_H at larger wavenumbers with spectra scaling as k4/3k^{-4/3}. We demonstrate how, within this phenomenology, the commonly observed ``bottleneck'' in the energy spectrum might be explained. We derive a wavenumber khk_h which is less than the Kolmogorov dissipation wavenumber, at which both energy and helicity cascades terminate due to dissipation effects. Data from direct numerical simulations are used to check our predictions.Comment: 14 pages, 5 figures, accepted to Physical Review

    Isotropy vs anisotropy in small-scale turbulence

    Full text link
    The decay of large-scale anisotropies in small-scale turbulent flow is investigated. By introducing two different kinds of estimators we discuss the relation between the presence of a hierarchy for the isotropic and the anisotropic scaling exponents and the persistence of anisotropies. Direct measurements from a channel flow numerical simulation are presented.Comment: 7 pages, 2 figure

    Spectral scaling of the Leray-α\alpha model for two-dimensional turbulence

    Full text link
    We present data from high-resolution numerical simulations of the Navier-Stokes-α\alpha and the Leray-α\alpha models for two-dimensional turbulence. It was shown previously (Lunasin et al., J. Turbulence, 8, (2007), 751-778), that for wavenumbers kk such that kα1k\alpha\gg 1, the energy spectrum of the smoothed velocity field for the two-dimensional Navier-Stokes-α\alpha (NS-α\alpha) model scales as k7k^{-7}. This result is in agreement with the scaling deduced by dimensional analysis of the flux of the conserved enstrophy using its characteristic time scale. We therefore hypothesize that the spectral scaling of any α\alpha-model in the sub-α\alpha spatial scales must depend only on the characteristic time scale and dynamics of the dominant cascading quantity in that regime of scales. The data presented here, from simulations of the two-dimensional Leray-α\alpha model, confirm our hypothesis. We show that for kα1k\alpha\gg 1, the energy spectrum for the two-dimensional Leray-α\alpha scales as k5k^{-5}, as expected by the characteristic time scale for the flux of the conserved enstrophy of the Leray-α\alpha model. These results lead to our conclusion that the dominant directly cascading quantity of the model equations must determine the scaling of the energy spectrum.Comment: 11 pages, 4 figure

    Scaling Exponents in Anisotropic Hydrodynamic Turbulence

    Full text link
    In anisotropic turbulence the correlation functions are decomposed in the irreducible representations of the SO(3) symmetry group (with different "angular momenta" \ell). For different values of \ell the second order correlation function is characterized by different scaling exponents ζ2()\zeta_2(\ell). In this paper we compute these scaling exponents in a Direct Interaction Approximation (DIA). By linearizing the DIA equations in small anisotropy we set up a linear operator and find its zero-modes in the inertial interval of scales. Thus the scaling exponents in each \ell-sector follow from solvability condition, and are not determined by dimensional analysis. The main result of our calculation is that the scaling exponents ζ2()\zeta_2(\ell) form a strictly increasing spectrum at least until =6\ell=6, guaranteeing that the effects of anisotropy decay as power laws when the scale of observation diminishes. The results of our calculations are compared to available experiments and simulations.Comment: 10 pages, 4 figures, PRE submitted. Fixed problems with figure

    Nonperturbative Spectrum of Anomalous Scaling Exponents in the Anisotropic Sectors of Passively Advected Magnetic Fields

    Full text link
    We address the scaling behavior of the covariance of the magnetic field in the three-dimensional kinematic dynamo problem when the boundary conditions and/or the external forcing are not isotropic. The velocity field is gaussian and δ\delta-correlated in time, and its structure function scales with a positive exponent ξ\xi. The covariance of the magnetic field is naturally computed as a sum of contributions proportional to the irreducible representations of the SO(3) symmetry group. The amplitudes are non-universal, determined by boundary conditions. The scaling exponents are universal, forming a discrete, strictly increasing spectrum indexed by the sectors of the symmetry group. When the initial mean magnetic field is zero, no dynamo effect is found, irrespective of the anisotropy of the forcing. The rate of isotropization with decreasing scales is fully understood from these results.Comment: 22 pages, 2 figures. Submitted to PR
    corecore