16 research outputs found

    Nocistatin inhibits pregnant rat uterine contractions in vitro: Roles of calcitonin gene-related peptide and calcium-dependent potassium channel.

    Get PDF
    The endogenous neuropeptide nociceptin/orphanin FQ, translated from the prepronociceptin gene, exerts a contraction-inhibitory effect on the rat uterus. As nocistatin has been reported to cause functional antagonism of the pro-nociceptive effects of nociceptin, we set out to investigate its effects on the pregnant rat uterus and to elucidate its signalling pathway. The expression of prepronociceptin mRNA in the uterus and nocistatin levels in the uterus and the plasma were confirmed by RT-PCR and radioimmunoassay. The uterine levels of prepronociceptin mRNA and nocistatin were significantly increased by the last day of pregnancy, while the plasma nocistatin levels remained unchanged. In the isolated organ bath studies nocistatin inhibited the prostaglandin- and the KCl-evoked contractions in the uterus dose-dependently. This latter effect was decreased by preincubation with capsaicin. Incubation with calcitonin gene-related peptide after capsaicin treatment caused an elevation in the contraction-inhibitory effect of nocistatin. The effect of nocistatin was also decreased by the Ca2+-dependent K+ channel inhibitor paxilline, against spontaneous uterine contractions. Nociceptin potentiated the action of nocistatin. Naloxone decreased the effect of nocistatin administered either alone or in combination with nociceptin. In Ca2+-poor environment, this effect of naloxone was suspended. Enzyme immunoassay for the uterine intracellular cAMP levels partially confirmed the results of in vitro contractility studies. We conclude that nocistatin, generated locally in the uterus, exerts an inhibitory effect, the mechanism being mediated in part by Ca2+-dependent K+ channels, the elevation of cAMP levels and sensory neuropeptides

    Novel antagonists of growth hormone-releasing hormone inhibit growth andvascularization of human experimental ovarian cancers.

    No full text
    BACKGROUND: Antagonists of growth hormone-releasing hormone (GHRH) inhibit the proliferation of various human cancer cell lines and experimental tumors by mechanisms that include direct action on GHRH receptors in cancer cells. METHODS: In this study, the effects of newly synthesized GHRH antagonists, MIA-313, MIA-602, MIA-604, and MIA-610, were investigated in 2 human ovarian epithelial adenocarcinoma cell lines, OVCAR-3 and SKOV-3, in vitro and in vivo. The expression of receptors for GHRH was demonstrated by Western blot analysis and ligand competition methods in the OVCAR-3 and SKOV-3 cell lines and in tumors from those cells grown in athymic nude mice. The effects of GHRH antagonists on the secretion of vascular endothelial growth factor (VEGF) by OVCAR-3 cells and on the vascularization of OVCAR-3 xenografts also were evaluated. RESULTS: Both the pituitary and the splice variant type 1 (SV1) GHRH receptors were detected in the 2 cell lines and in tumor xenografts, and SV1 was expressed at higher levels. Cell viability assays revealed the antiproliferative effect of all GHRH antagonists that were. Maximal tumor growth inhibition was approximately 75% in both models. MIA-313 and MIA-602 decreased VEGF secretion of OVCAR-3 cells, as measured by enzyme-linked immunosorbent assay, and reduced tumor vascularization in a Matrigel plug assay, but caused no change in the expression of VEGF or VEGF receptor in the terminal ileum of mice with OVCAR-3 tumors. CONCLUSIONS: Results from the current study indicated that a he novel approach based on GHRH antagonists may offer more effective therapeutic alternatives for patients with advanced ovarian cancer and who do not tolerate conventional anti-VEGF therapy

    A remark on the ideal extension property

    Get PDF
    As a sequel to [23] we investigate ideal properties focusing on subtractive varieties. After having listed a few basic results, we give several characterizations of the commutator of ideals and prove, for example, that it commutes with finite direct products. We deal with the ideal extension property (IEP) and with related commutator properties, showing for instance that IEP implies that the commutator commutes with restriction to subalgebras. Then we characterize varieties with distributive ideal lattices and relate this property with (a form of) equationally definable principal ideals and with IEP. Then, at the other extreme, we deal with Abelian and Hamiltonian properties (of ideals and congruences), giving for example a purely ideal theoretic characterization of varieties of Abelian groups with linear operations. To finish with, we present a few examples aiming at vindicating our work

    Inhibitory Effects of Antagonists of Growth Hormone-Releasing Hormone (GHRH) in Thyroid Cancer

    No full text
    Growth hormone-releasing hormone (GHRH) is a peptide hormone secreted by the hypothalamus that regulates the synthesis and secretion of growth hormone (GH) in the pituitary. The extra-hypothalamic GHRH and its cognate receptors (GHRHR and splice variants) play a mitogenic role by stimulating cell proliferation and preventing apoptotic cell death. It is well established that GHRH antagonists inhibit the growth, tumorigenicity, and metastasis of various human malignancies. In this work, we studied the effect of two new GHRH antagonists, MIA602 and MIA690, on thyroid cancer. We studied the effect of MIA602 and MIA690 on thyroid cancer in vitro, using human thyroid cancer cell lines, and in vivo, using chicken embryo chorioallantoic membrane (CAM) assays. We found that mRNA for GHRH and GHRH receptor is expressed in thyroid cell lines and in samples of thyroid tumors. Immunohistochemistry confirmed the expression of GHRHR protein in specimens of thyroid tumor. We observed that GHRH antagonists inhibited the growth and increased apoptosis of thyroid cancer cells. In vivo, the antagonists inhibited growth and angiogenesis of engrafted thyroid tumors. Our results suggest that GHRH expression may play a role in growth of thyroid cancer and that GHRH antagonists can be a therapeutic option for thyroid cancer patients

    Cardioprotective effects of growth hormone-releasing hormone agonist after myocardial infarction

    No full text
    Whether the growth hormone (GH)/insulin-like growth factor 1(IGF-1) axis exerts cardioprotective effects remains controversial; and the underlying mechanism(s) for such actions are unclear. Here we tested the hypothesis that growth hormone-releasing hormone (GHRH) directly activates cellular reparative mechanisms within the injured heart, in a GH/IGF-1 independent fashion. After experimental myocardial infarction (MI), rats were randomly assigned to receive, during a 4-week period, either placebo (n = 14), rat recombinant GH (n = 8) or JI-38 (n = 8; 50 µg/kg per day), a potent GHRH agonist. JI-38 did not elevate serum levels of GH or IGF-1, but it markedly attenuated the degree of cardiac functional decline and remodeling after injury. In contrast, GH administration markedly elevated body weight, heart weight, and circulating GH and IGF-1, but it did not offset the decline in cardiac structure and function. Whereas both JI-38 and GH augmented levels of cardiac precursor cell proliferation, only JI-38 increased antiapoptotic gene expression. The receptor for GHRH was detectable on myocytes, supporting direct activation of cardiac signal transduction. Collectively, these findings demonstrate that within the heart, GHRH agonists can activate cardiac repair after MI, suggesting the existence of a potential signaling pathway based on GHRH in the heart. The phenotypic profile of the response to a potent GHRH agonist has therapeutic implications
    corecore