75,021 research outputs found
Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks
With increase in ageing population, health care market keeps growing. There
is a need for monitoring of health issues. Wireless Body Area Network (WBAN)
consists of wireless sensors attached on or inside human body for monitoring
vital health related problems e.g, Electro Cardiogram (ECG), Electro
Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening
situations, timely sending of data is essential. For data to reach health care
center, there must be a proper way of sending data through reliable connection
and with minimum delay. In this paper transmission delay of different paths,
through which data is sent from sensor to health care center over heterogeneous
multi-hop wireless channel is analyzed. Data of medical related diseases is
sent through three different paths. In all three paths, data from sensors first
reaches ZigBee, which is the common link in all three paths. Wireless Local
Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX),
Universal Mobile Telecommunication System (UMTS) are connected with ZigBee.
Each network (WLAN, WiMAX, UMTS) is setup according to environmental
conditions, suitability of device and availability of structure for that
device. Data from these networks is sent to IP-Cloud, which is further
connected to health care center. Delay of data reaching each device is
calculated and represented graphically. Main aim of this paper is to calculate
delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240
On Modeling Geometric Joint Sink Mobility with Delay-Tolerant Cluster-less Wireless Sensor Networks
Moving Sink (MS) in Wireless Sensor Networks (WSNs) has appeared as a
blessing because it collects data directly from the nodes where the concept of
relay nodes is becomes obsolete. There are, however, a few challenges to be
taken care of, like data delay tolerance and trajectory of MS which is NP-hard.
In our proposed scheme, we divide the square field in small squares. Middle
point of the partitioned area is the sojourn location of the sink, and nodes
around MS are in its transmission range, which send directly the sensed data in
a delay-tolerant fashion. Two sinks are moving simultaneously; one inside and
having four sojourn locations and other in outer trajectory having twelve
sojourn locations. Introduction of the joint mobility enhances network life and
ultimately throughput. As the MS comes under the NP-hard problem, we convert it
into a geometric problem and define it as, Geometric Sink Movement (GSM). A set
of linear programming equations has also been given in support of GSM which
prolongs network life time
Contributions to national geodetic satellite program: Global correlations
Various forms of geophysical information as indicators of the physical properties of the planet are studied. It is useful to study the interrelationships of these various geophysical parameters in an attempt to determine whether they are generated by the same mechanism and if not, to assess the association of the various generating mechanisms. The formulas for studying such correlations are summarized
Transmission Delay of Multi-hop Heterogeneous Networks for Medical Applications
Nowadays, with increase in ageing population, Health care market keeps
growing. There is a need for monitoring of Health issues. Body Area Network
consists of wireless sensors attached on or inside human body for monitoring
vital Health related problems e.g, Electro Cardiogram (ECG),
ElectroEncephalogram (EEG), ElectronyStagmography(ENG) etc. Data is recorded by
sensors and is sent towards Health care center. Due to life threatening
situations, timely sending of data is essential. For data to reach Health care
center, there must be a proper way of sending data through reliable connection
and with minimum delay. In this paper transmission delay of different paths,
through which data is sent from sensor to Health care center over heterogeneous
multi-hop wireless channel is analyzed. Data of medical related diseases is
sent through three different paths. In all three paths, data from sensors first
reaches ZigBee, which is the common link in all three paths. After ZigBee there
are three available networks, through which data is sent. Wireless Local Area
Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX),
Universal Mobile Telecommunication System (UMTS) are connected with ZigBee.
Each network (WLAN, WiMAX, UMTS) is setup according to environmental
conditions, suitability of device and availability of structure for that
device. Data from these networks is sent to IP-Cloud, which is further
connected to Health care center. Main aim of this paper is to calculate delay
of each link in each path over multihop wireless channel.Comment: BioSPAN with 7th IEEE International Conference on Broadband and
Wireless Computing, Communication and Applications (BWCCA 2012), Victoria,
Canada, 201
Evaluation and comparisons of recent geopotential solutions
A statistical evaluation of some of the recent satellite determined gravity models, including some with distinct data base, indicates that the geopotential coefficients of these models are individually meaningful for frequencies with wave numbers n = 2 through 7 certainly and wave numbers n = 8 through 10 probably. Geopotential coefficients in higher frequency ranges while apparently important for computing accurate satellite orbits seem to have little geophysical significance in an individual sense. Differences between various gravity models and those satellite purely between determined geopotential models and their associated combination models show no consistent relationship to surface gravimetric coverage. Additional classical tracking data are important in improving the existing description of the earth's gravity field but their contribution in extending its frequency range beyond what is now available is uncertain
Efficient Memory-Protected Integration of Add-On Software Subsystems in Small Embedded Automotive Applications
Current innovations in the automotive industry
evolve mainly in the electronics and software domain. This leads
to an increasing integration of additional software subsystems
into already existing electronic control units (ECUs) to cope with
the raised amount and complexity of present ECUs in modern
high-end vehicles. This paper discusses different approaches
which are required to integrate such add-on software subsystems
in an isolated memory domain, and considers particularly the
special needs of small embedded systems—including the limited
hardware support. Special focus is brought to the efficient detection
of malicious memory accesses, as well as the benefits of
a thereupon possible and adaptable failure-handling strategy.
All investigations are based on a developed memory-protection
framework which has been tailored to the special needs of a sample
vehicle dynamics control system. Its usage allows the combination
of. integrating additional subsystems without reducing the main
application’s availability
Equatorial radius of the earth: A dynamical determination
An interesting variation on the familiar method of determining the earth's equatorial radius a sub e, from a knowledge of the earth's equatorial gravity is suggested. The value of equatorial radius thus found is 6378,142 + or - 5 meters. The associated parameters are GM = 3,986008 + or - 4 X 1014 cu cm/sec/sec which includes the relative mass of atmosphere approximately 0.000001 x GM, the equatorial gravity gamma sub e = 978,030.9 milligals (constrained in this solution by the Potsdam Correction of 13.67 milligals as the Potsdam Correction is more directly, or less indirectly, measurable than the equatorial gravity) and an ellipsoidal flattening of f = 1/298.255
- …