38 research outputs found

    Experimental investigation into l-Arg and l-Cys eco-friendly surfactants in enhanced oil recovery by considering IFT reduction and wettability alteration

    Get PDF
    Surfactant flooding is an important technique used to improve oil recovery from mature oil reservoirs due to minimizing the interfacial tension (IFT) between oil and water and/or altering the rock wettability toward water-wet using various surfactant agents including cationic, anionic, non-ionic, and amphoteric varieties. In this study, two amino-acid based surfactants, named lauroyl arginine (l-Arg) and lauroyl cysteine (l-Cys), were synthesized and used to reduce the IFT of oil–water systems and alter the wettability of carbonate rocks, thus improving oil recovery from oil-wet carbonate reservoirs. The synthesized surfactants were characterized using Fourier transform infrared spectroscopy and nuclear magnetic resonance analyses, and the critical micelle concentration (CMC) of surfactant solutions was determined using conductivity, pH, and turbidity techniques. Experimental results showed that the CMCs of l-Arg and l-Cys solutions were 2000 and 4500 ppm, respectively. It was found that using l-Arg and l-Cys solutions at their CMCs, the IFT and contact angle were reduced from 34.5 to 18.0 and 15.4 mN/m, and from 144° to 78° and 75°, respectively. Thus, the l-Arg and l-Cys solutions enabled approximately 11.9% and 8.9% additional recovery of OOIP (original oil in place). It was identified that both amino-acid surfactants can be used to improve oil recovery due to their desirable effects on the EOR mechanisms at their CMC ranges

    Geochemical study of the early cretaceous Fahliyan oil reservoir in the northwest Persian Gulf

    Get PDF
    Three crude oil samples from the Fahliyan Formation in ‘KG’ and ‘F’ fields in the northwest Persian Gulf, namely KG-031, F9A-3H and F15-3H for the geochemical study. In this study, the physicochemical properties, gas chromatography (GC, GC Mass) and (Detailed Hydrocarbon Analysis) DHA analyses for the collected Fahliyan oils were carried out. The API, Trace Element (Ni, V) and S% parameters indicated that the Fahliyan oil was generated from a source rock which deposited in reducing environment condition with a carbonate-shale compound lithology. Moreover, low pour point, higher S% and low viscosity parameters of “KG” sample confirmed the existence of medium oil characteristics in this field. In addition, the geochemical outcomes of GC, GC–MS and DHA analyses indicated that the ‘KG’ oils are more aromatic compared with ‘F’ oil; while biomarkers revealed that Fahliyan reservoir oil is highly mature and was formed from a carbonate source rock containing types II, III kerogen. Thus, sterane/hopane biomarkers (C24/C23 and C22/C21 ratios) revealed that Fahliyan oil originated from carbonate source rocks deposited in an anoxic to dysoxic environment, which is consistent with the above analyses. It was identified that the source rock age is early Cretaceous to late Jurassic. It can be reported that the Fahliyan oils from both fields were generated in the same source rock and have almost the same physical properties, and will have the same production strategy

    Insight into nano-chemical enhanced oil recovery from carbonate reservoirs using environmentally friendly nanomaterials

    Get PDF
    The use of nanoparticles (NPs) in enhanced oil recovery (EOR) processes is very effective in reducing the interfacial tension (IFT) and surface tension (ST) and altering the wettability of reservoir rocks. The main purpose of this study was to use the newly synthesized nanocomposites (KCl / SiO2 / Xanthan NCs) in EOR applications. Several analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) were applied to confirm the validity of the synthesized NCs. From the synthesized NCs, nanofluids were prepared at different concentrations of 100-2000 ppm and characterized using electrical conductivity, IFT, and ST measurements. From the obtained results, it can be observed that 1000 ppm is the optimal concentration of the synthesized NCs that had the best performance in EOR applications. The nanofluid with 1000 ppm KCl / SiO2 / Xanthan NCs enabled reducing the IFT and ST from 33 and 70 to 29 and 40 mN/m, respectively. However, the contact angle was highly decreased under the influence of the same nanofluid to 41° and the oil recovery improved by an extra 17.05 % OOIP. To sum up, KCl / SiO2 / Xanthan NCs proved highly effective in altering the wettability of rocks from oil-wet to water-wet and increasing the cumulative oil production

    Economic and productivity evaluation of different horizontal drilling scenarios: Middle East oil fields as case study

    Get PDF
    Development of high-density oil and gas fields presents a great challenge to the energy industry due to the low productivity of individual wells and their high drilling cost. We thus compared the productivity, associated costs and economical revenues gained from two field development scenarios, with multilateral and horizontal drilling, to evaluate the optimal drilling and completion conditions in a giant heavy oil reservoir in the Middle East. Well path design was identified as one of the most complex parameters depending on the well-testing results, field production and reservoir simulation data. The fishbone well of four branches with a length of 300 m each and 30° deviation from the main hole was identified to be drilled and completed using open-hole sidetrack as the best approach. The fishbone structure raised production by 393%, while drilling cost only increased by 130% compared with a conventional horizontal well

    Experimental investigation of the effect of Vitagnus plant extract on enhanced oil recovery process using interfacial tension (IFT) reduction and wettability alteration mechanisms

    Get PDF
    © 2020, The Author(s). Surfactant flooding is a chemical enhanced oil recovery (cEOR) process wherein anionic, cationic, non-ionic, and amphoteric surfactants are injected into oil reservoirs to produce more hydrocarbon. These chemical and industrial agents might cause some economic and environmental challenges. Recently, injection of natural surfactants, as new environmentally friendly EOR agents, for improving oil recovery has been proposed by researchers. In this study, the extract of Vitagnus, a natural surfactant, was used to minimize the interfacial tension (IFT) and alter the rock wettability towards the strong water-wet system, thereby improving the oil recovery from the carbonate rock The conductivity, pH, and turbidity measurements were undertaken to identify the critical micelle concentration (CMC) of the surfactant solutions prepared by mixing 500, 1000, 2000, 3000, 4000, 5000, 6000, and 7000 ppm of the Vitagnus extract and distilled water. The obtained experimental results reveal that the optimum CMC value of the used surfactant was 3000 ppm. At this CMC value, the IFT reduced from 29.5 to 5.28 mN/m, and the contact angle of the oil droplet on the surface of the carbonate rock decreased from 114° to 29°. Accordingly, during the tertiary process, oil recovery was improved from 44% to 54.6% OOIP (original oil in place) by injecting 2.25 PVs of the VIT3000 surfactant containing 3000 ppm of the plant extract

    Effect of environment-friendly non-ionic surfactant on interfacial tension reduction and wettability alteration; Implications for enhanced oil recovery

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Production from mature oil reservoirs can be optimized by using the surfactant flooding technique. This can be achieved by reducing oil and water interfacial tension (IFT) and modifying wettability to hydrophilic conditions. In this study, a novel green non-ionic surfactant (dodecanoyl-glucosamine surfactant) was synthesized and used to modify the wettability of carbonate reservoirs to hydrophilic conditions as well as to decrease the IFT of hydrophobic oil-water systems. The synthesized non-ionic surfactant was characterized by Fourier transform infrared spectroscopy (FTIR) and chemical shift nuclear magnetic resonance (HNMR) analyses. Further pH, turbidity, density, and conductivity were investigated to measure the critical micelle concentration (CMC) of surfactant solutions. The result shows that this surfactant alters wettability from 148.93° to 65.54° and IFT from 30 to 14 dynes/cm. Core-flooding results have shown that oil recovery was increased from 40% (by water flooding) to 59% (by surfactant flooding). In addition, it is identified that this novel non-ionic surfactant can be used in CO2 storage applications due to its ability to alter the hydrophobicity into hydrophilicity of the reservoir rocks

    Synergistic efficiency of zinc oxide/montmorillonite nanocomposites and a new derived saponin in liquid/liquid/solid interface-included systems: Application in nanotechnology-assisted enhanced oil recovery

    Get PDF
    Oil production faces challenges such as limited oil production from carbonate reservoirs, high oil production costs, and environmental issues. Chemical flooding as an enhanced oil recovery (EOR) method (CEOR) can increase oil production by the use of chemical additives such as surfactants into the reservoirs. Surfactants can increase oil recovery by interfacial tension (IFT) reduction and alteration of the rock wettability from oil-wet to water-wet. The synthesis of chemicals such as synthetic surfactants is usually costly and harmful to the environment. To solve these problems, many researchers have oriented on the use of natural surfactants instead of synthetic ones within the CEOR process. A new approach to increase the efficiency of CEOR is the synergizing of the chemical additives with nanoparticles as a hybrid fluid, which is known as the nanotechnology-assisted EOR method. In this research, a natural surfactant derived from Cyclamen persicum (CP) plant was extracted, and its performance was optimized with the zinc oxide/montmorillonite (ZnO/MMT) nanocomposite in a synergistic usage. At the optimum concentration of the surfactant, the measurements of the IFT and the contact angle show 57.78 and 61.58 % optimizations, respectively. Also, in the presence of NaCl, the performance of CP is improved. IFT and contact angle measurements were also conducted for ZnO/MMT nanofluids and CP-ZnO/MMT as hybrid nanofluids. Results indicate that ZnO/MMT nanocomposites can alter the wettability of the carbonate rock to the water-wet state. Also, the CP-ZnO/MMT hybrid nanofluid shows a good potential in both IFT reduction and altering wettability from oil-wet to water-wet. Finally, to investigate the effects of solutions on increasing oil recovery factor (RF), the optimum concentrations of the surfactant, nanocomposite, and hybrid solutions were selected for dynamic core flooding experiments, and improvements showed oil RF increases of 8.2, 6, and 13 %, respectively

    Investigating the effect of [C8Py][Cl] and [C18Py][Cl] ionic liquids on the water/oil interfacial tension by considering Taguchi method

    Get PDF
    Capillary and interfacial forces are of great influences of trapping hydrocarbon in porous media after primary and secondary recovery processes. The trapped crude oil in the reservoir can be mobilized and produced by reducing these forces. Thus, surfactant flooding, as a main enhanced oil recovery (EOR) method, is usually applied to reduce the interfacial tension (IFT) of crude oil–water system in porous medium and improves the oil recovery. This study focused on the effect of [C8Py][Cl] and [C18Py][Cl] ionic liquids (ILs), as a new family of surfactant, in combination with various salts including sodium chloride, potassium chloride, magnesium sulfate and potassium sulfate on IFT reduction. EOR injection solutions were prepared from mixing the ILs at different concentrations of 100, 250, 500 and 1000 ppm with the salts ranging from 500 to 80,000 ppm. Obtained results showed that the minimum IFT value from both ILs was achieved when the concentration of the ILs was about 1000 g/mL, and the concentrations of KCl, K2SO4, MgSO4 and NaCl were 1000, 2000, 500 and 80,000 ppm, respectively. The minimum IFTs were achieved when NaCl and ILs concentrations were the maximum and MgSO4 concentration was the minimum

    Development of a nanobiodegradable drilling fluid using prosopis farcta plant and pomegranate peel powders with metal oxide nanoparticles

    Get PDF
    One of the inevitable problems encountered during the petroleum well drilling process is lost circulation in which part of the drilling fluid is lost into the formation. A combination of nanoparticles with their unique properties and cost-effective biodegradable materials can play an effective role in treating fluid loss. In this study, our aim was to formulate drilling fluids modified with nanoparticles, pomegranate peel powder, and Prosopis farcta plant powder. The drilling fluids were identified and recognized using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy techniques. Furthermore, experimental tests were conducted in order to investigate the performance of the newly formulated drilling fluid in improving fluid loss characteristics. The obtaining results have shown that adding 0.3 wt % of pomegranate peel powder to the reference (base) drilling fluid reduces the filter loss volume to 7.9 mL compared to the reference fluid (11.6 mL). As the optimal concentration of TiO2 was mixed with 0.3 wt % of pomegranate peel powder then added to the reference fluid, the filter loss volume was reduced to 8.6 mL

    An investigation into the roles of chlorides and sulphate salts on the performance of low salinity injection in sandstone reservoirs : experimental approach

    Get PDF
    Numerous studies have been carried out to ascertain the mechanisms of low salinity and smart water flooding technique for improved oil recovery. Focus were often on brine composition and, specifically the cationic content in sandstone reservoirs. Given the importance of the salt composition and concentration, tweaking the active ions which are responsible for the fluids-rock equilibrium will bring into effect numerous mechanisms of displacement which have been extensively debated. This experimental study, however, was carried out to evaluate the extent of the roles of chloride and sulphate-based brines in improved oil recovery. To carry this out, 70,000 ppm sulphates and chloride-based brines were prepared to simulate formation water and 5,000ppm brines of the same species as low salinity displacement fluids. Core flooding process was used to simulate the displacement of oil by using four (4) native sandstones core samples, obtained from Burgan oil field in Kuwait, at operating conditions of 1500 psig and 50oC. The core samples were injected with 70,000 ppm chloride and sulphates and subsequently flooded with the 5,000 ppm counterparts in a forced imbibition process. Separate evaluations of chloride and sulphate-based brines were carried out to investigate the displacement efficiencies of each brine species. The results showed that the in both high and low salinity displacement tests, the SO4 brine presented better recovery of up to 89% of the initial oil saturation (Soi). Several mechanisms of displacement were observed to be responsible for improved recovery during SO4 brine displacement. IFT measurement experiments also confirmed that there was reduction in IFT at test conditions between SO4 brine and oil and visual inspection of the effluent showed a degree emulsification of oil and brines. Changes in pH were observed in the low salinity flooding and negligible changes were noticed in the high salinity floods. These results provide an insight into the roles of chloride and sulphate ions in the design of smart “designer” water and low salinity injection scenarios
    corecore