2,558 research outputs found

    M2M modelling of the Galactic disc via PRIMAL: Fitting to Gaia Error Added Data

    Get PDF
    We have adapted our made-to-measure (M2M) algorithm PRIMAL to use mock Milky Way like data constructed from an N-body barred galaxy with a boxy bulge in a known dark matter potential. We use M0 giant stars as tracers, with the expected error of the ESA space astrometry mission Gaia. We demonstrate the process of constructing mock Gaia data from an N-body model, including the conversion of a galactocentric Cartesian coordinate N-body model into equatorial coordinates and how to add error to it for a single stellar type. We then describe the modifications made to PRIMAL to work with observational error. This paper demonstrates that PRIMAL can recover the radial profiles of the surface density, radial velocity dispersion, vertical velocity dispersion and mean rotational velocity of the target disc, along with the pattern speed of the bar, to a reasonable degree of accuracy despite the lack of accurate target data. We also construct mock data which take into account dust extinction and show that PRIMAL recovers the structure and kinematics of the disc reasonably well. In other words, the expected accuracy of the Gaia data is good enough for PRIMAL to recover these global properties of the disc, at least in a simplified condition, as used in this paper.Comment: 16 pages, 10 figures, submitted to MNRAS 17th Dec 2013, accepted 30th June 201

    Nonclassical Moments and their Measurement

    Full text link
    Practically applicable criteria for the nonclassicality of quantum states are formulated in terms of different types of moments. For this purpose the moments of the creation and annihilation operators, of two quadratures, and of a quadrature and the photon number operator turn out to be useful. It is shown that all the required moments can be determined by homodyne correlation measurements. An example of a nonclassical effect that is easily characterized by our methods is amplitude-squared squeezing.Comment: 12 pages, 6 figure

    Galaxy formation with radiative and chemical feedback

    Get PDF
    Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We discuss the merits and limitations of the first release of GAMESH, also opening new directions to a full implementation of feedback processes in galaxy formation models by combining semi-analytic and numerical methods.Comment: This version has coloured figures not present in the printed version. Submitted to MNRAS, minor revision

    Stellar Motion around Spiral Arms: Gaia Mock Data

    Get PDF
    We compare the stellar motion around a spiral arm created in two different scenarios, transient/co-rotating spiral arms and density-wave-like spiral arms. We generate Gaia mock data from snapshots of the simulations following these two scenarios using our stellar population code, SNAPDRAGONS, which takes into account dust extinction and the expected Gaia errors. We compare the observed rotation velocity around a spiral arm similar in position to the Perseus arm, and find that there is a clear difference in the velocity features around the spiral arm between the co-rotating spiral arm and the density-wave-like spiral arm. Our result demonstrates that the volume and accuracy of the Gaia data are sufficient to clearly distinguish these two scenarios of the spiral arms.Comment: 5 pages, 1 figure, to appear in the proceedings of "The Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases", Barcelona, 1-5 December 2014, eds. N. Walton, F. Figueras, C. Soubira

    Gas and Stellar Motions and Observational Signatures of Co-Rotating Spiral Arms

    Get PDF
    We have observed a snapshot of our N-body/Smoothed Particle Hydrodynamics simulation of a Milky Way-sized barred spiral galaxy in a similar way to how we can observe the Milky Way. The simulated galaxy shows a co-rotating spiral arm, i.e. the spiral arm rotates with the same speed as the circular speed. We observed the rotation and radial velocities of the gas and stars as a function of the distance from our assumed location of the observer at the three lines of sight on the disc plane, (l, b) = (90, 0), (120, 0) and (150,0) deg. We find that the stars tend to rotate slower (faster) behind (at the front of) the spiral arm and move outward (inward), because of the radial migration. However, because of their epicycle motion, we see a variation of rotation and radial velocities around the spiral arm. On the other hand, the cold gas component shows a clearer trend of rotating slower (faster) and moving outward (inward) behind (at the front of) the spiral arm, because of the radial migration. We have compared the results with the velocity of the maser sources from Reid et al. (2014), and find that the observational data show a similar trend in the rotation velocity around the expected position of the spiral arm at l = 120 deg. We also compared the distribution of the radial velocity from the local standard of the rest, V_LSR, with the APOGEE data at l = 90 deg as an example.Comment: 10 pages, 7 figures, accepted for publication in MNRA
    • …
    corecore