4,120 research outputs found
Two-dimensional macroscopic quantum dynamics in YBCO Josephson junctions
We theoretically study classical thermal activation (TA) and macroscopic
quantum tunneling (MQT) for a YBCO Josephson junction coupled with an LC
circuit. The TA and MQT escape rate are calculated by taking into account the
two-dimensional nature of the classical and quantum phase dynamics. We find
that the MQT escape rate is largely suppressed by the coupling to the LC
circuit. On the other hand, this coupling leads to the slight reduction of the
TA escape rate. These results are relevant for the interpretation of a recent
experiment on the MQT and TA phenomena in YBCO bi-epitaxial Josephson
junctions.Comment: 9 pages, 2 figure
Numerical study of pi-junction using spin filtering barriers
We numerically investigate the Josephson transport through ferromagnetic
insulators (FIs) by taking into account its band structure. By use of the
recursive Green's function method, we found the formation of the pi junction in
the case of the fully spin-polarized FI (FPFI), e.g., LaBaCuO.
Moreover, the 0-pi transition is induced by increasing the thickness of FPFI.
On the other hand, Josephson current through the Eu chalcogenides shows the pi
junction behavior in the case of the strong d-f hybridization between the
conduction d and the localized f electrons of Eu. Such FI-based Josephson
junctions may become a element in the architecture of future quantum
information devices.Comment: 9 pages, 5 figure
Macroscopic quantum tunneling and quasiparticle-tunneling blockade effect in s-wave/d-wave hybrid junctions
We have theoretically investigated macroscopic quantum tunneling (MQT) and
the influence of nodal quasiparticles and zero energy bound states (ZES) on MQT
in s-wave/ d-wave hybrid Josephson junctions. In contrast to d-wave/d-wave
junctions, the low-energy quasiparticle dissipation resulting from nodal
quasiparticles and ZES is suppressed due to a quasiparticle-tunneling blockade
effect in an isotropic s-wave superconductor. Therefore, the inherent
dissipation in these junctions is found to be very weak. We have also
investigated MQT in a realistic s-wave/d-wave (Nb/Au/YBCO) junction in which
Ohmic dissipation in a shunt resistance is stronger than the inherent
dissipation and find that MQT is observable within the current experimental
technology. This result suggests high potential of s-wave/d-wave hybrid
junctions for applications in quantum information devices.Comment: 4 pages, 3 figure
Effect of zero energy bound states on macroscopic quantum tunneling in high-Tc superconductor junctions
The macroscopic quantum tunneling (MQT) in the current biased high-Tc
superconductor Josephson junctions and the effect of the zero energy bound
states (ZES) on the MQT are theoretically investigated. We obtained the
analytical formula of the MQT rate and showed that the presence of the ZES at
the normal/superconductor interface leads to a strong Ohmic quasiparticle
dissipation. Therefore, the MQT rate is noticeably inhibited in compared with
the c-axis junctions in which the ZES are completely absent.Comment: 4 pages, 1 figure, comment and reference about recent experiment
adde
Quasi-Superradiant Soliton State of Matter in Quantum Metamaterials
Strong interaction of a system of quantum emitters (e.g., two-level atoms)
with electromagnetic field induces specific correlations in the system
accompanied by a drastic insrease of emitted radiation (superradiation or
superfluorescence). Despite the fact that since its prediction this phenomenon
was subject to a vigorous experimental and theoretical research, there remain
open question, in particular, concerning the possibility of a first order phase
transition to the superradiant state from the vacuum state. In systems of
natural and charge-based artificial atome this transition is prohibited by
"no-go" theorems. Here we demonstrate numerically a similar transition in a
one-dimensional quantum metamaterial - a chain of artificial atoms (qubits)
strongly interacting with classical electromagnetic fields in a transmission
line. The system switches from vacuum state with zero classical electromagnetic
fields and all qubits being in the ground state to the quasi-superradiant (QS)
phase with one or several magnetic solitons and finite average occupation of
qubit excited states along the transmission line. A quantum metamaterial in the
QS phase circumvents the "no-go" restrictions by considerably decreasing its
total energy relative to the vacuum state by exciting nonlinear electromagnetic
solitons with many nonlinearly coupled electromagnetic modes in the presence of
external magnetic field.Comment: 6 pages, 4 figure
Theory of Macroscopic Quantum Tunneling in High-T_c c-Axis Josephson Junctions
We study macroscopic quantum tunneling (MQT) in c-axis twist Josephson
junctions made of high-T_c superconductors in order to clarify the influence of
the anisotropic order parameter symmetry (OPS) on MQT. The dependence of the
MQT rate on the twist angle about the c-axis is calculated by using
the functional integral and the bounce method. Due to the d-wave OPS, the
dependence of standard deviation of the switching current distribution
and the crossover temperature from thermal activation to MQT are found to be
given by and , respectively. We also show
that a dissipative effect resulting from the nodal quasiparticle excitation on
MQT is negligibly small, which is consistent with recent MQT experiments using
BiSrCaCuO intrinsic junctions. These results
indicate that MQT in c-axis twist junctions becomes a useful experimental tool
for testing the OPS of high-T_c materials at low temperature, and suggest high
potential of such junctions for qubit applications.Comment: 15 pages, 8 figures, 1 tabl
Spin-charge mixing effects on resonant tunneling in a polarized Luttinger Liquid
We investigate spin-charge mixing effect on resonant tunneling in
spin-polarized Tomonaga-Luttinger liquid with double impurities. The mixing
arises from Fermi velocity difference between two spin species due to Zeeman
effect. Zero bias conductance is calculated as a function of gate voltage
, gate magnetic field , temperature and magnetic field
applied to the system. Mixing effect is shown to cause rotation of the lattice
pattern of the conductance peaks in plane, which can be
observed in experiments. At low temperatures, the contour shapes are classified
into three types, reflecting the fact that effective barrier potential is
renormalized towards ``perfect reflection'', ``perfect transmission'' and
magnetic field induced ``spin-filtering'', respectively.Comment: 10 pages, 4 figures, Sec.I and references largely changed, results
for a strong barrier limit added in a new section Sec.I
Spectrum of Andreev bound states in Josepshon junctions with a ferromagnetic insulator
Ferromagnetic-insulator (FI) based Josephson junctions are promising
candidates for a coherent superconducting quantum bit as well as a classical
superconducting logic circuit. Recently the appearance of an intriguing
atomic-scale 0-pi transition has been theoretically predicted. In order to
uncover the mechanism of this phenomena, we numerically calculate the spectrum
of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov-de
Gennes equation. We show that Andreev spectrum drastically depends on the
parity of the FI-layer number L and accordingly the pi (0) state is always more
stable than the 0 (pi) state if L is odd (even).Comment: 6 pages, 5 figures, Invited Report on the Moscow International
Symposium on Magnetism MISM201
- …