50 research outputs found

    Synthesis of iron-doped TiO2 nanoparticles by ball-milling process : the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties

    Get PDF
    Titanium dioxide (TiO2) absorbs only a small fraction of incoming sunlight in the visible region thus limiting its photocatalytic efficiency and concomitant photocatalytic ability. The large-scale application of TiO2 nanoparticles has been limited due to the need of using an ultraviolet excitation source to achieve high photocatalytic activity. The inclusion of foreign chemical elements in the TiO2 lattice can tune its band gap resulting in an absorption edge red-shifted to lower energies enhancing the photocatalytic performance in the visible region of the electromagnetic spectrum. In this research work, TiO2 nanoparticles were doped with iron powder in a planetary ball-milling system using stainless steel balls. The correlation between milling rotation speeds with structural and morphologic characteristics, optical and magnetic properties, and photocatalytic abilities of bare and Fedoped TiO2 powders was studied and discussed.This work was partially financed by FCT-Fundacao para a Ciencia e Tecnologia-under the project PTDC/FIS/120412/2010: "Nanobased concepts for Innovative & Eco-sustainable constructive material's surfaces.

    The Application of Classification and Regression Trees for the Triage of Women for Referral to Colposcopy and the Estimation of Risk for Cervical Intraepithelial Neoplasia: A Study Based on 1625 Cases with Incomplete Data from Molecular Tests

    No full text
    Objective. Nowadays numerous ancillary techniques detecting HPV DNA and mRNA compete with cytology; however no perfect test exists; in this study we evaluated classification and regression trees (CARTs) for the production of triage rules and estimate the risk for cervical intraepithelial neoplasia (CIN) in cases with ASCUS+ in cytology. Study Design. We used 1625 cases. In contrast to other approaches we used missing data to increase the data volume, obtain more accurate results, and simulate real conditions in the everyday practice of gynecologic clinics and laboratories. The proposed CART was based on the cytological result, HPV DNA typing, HPV mRNA detection based on NASBA and flow cytometry, p16 immunocytochemical expression, and finally age and parous status. Results. Algorithms useful for the triage of women were produced; gynecologists could apply these in conjunction with available examination results and conclude to an estimation of the risk for a woman to harbor CIN expressed as a probability. Conclusions. The most important test was the cytological examination; however the CART handled cases with inadequate cytological outcome and increased the diagnostic accuracy by exploiting the results of ancillary techniques even if there were inadequate missing data. The CART performance was better than any other single test involved in this study. © 2015 Abraham Pouliakis et al

    Endogenous oligodendroglial alpha-synuclein and TPPP/p25α orchestrate alpha-synuclein pathology in experimental multiple system atrophy models.

    No full text
    Multiple system atrophy (MSA) is characterized by the presence of distinctive glial cytoplasmic inclusions (GCIs) within oligodendrocytes that contain the neuronal protein alpha-synuclein (aSyn) and the oligodendroglia-specific phosphoprotein TPPP/p25α. However, the role of oligodendroglial aSyn and p25α in the formation of aSyn-rich GCIs remains unclear. To address this conundrum, we have applied human aSyn (haSyn) pre-formed fibrils (PFFs) to rat wild-type (WT)-, haSyn-, or p25α-overexpressing oligodendroglial cells and to primary differentiated oligodendrocytes derived from WT, knockout (KO)-aSyn, and PLP-haSyn-transgenic mice. HaSyn PFFs are readily taken up by oligodendroglial cells and can recruit minute amounts of endogenous aSyn into the formation of insoluble, highly aggregated, pathological assemblies. The overexpression of haSyn or p25α accelerates the recruitment of endogenous protein and the generation of such aberrant species. In haSyn PFF-treated primary oligodendrocytes, the microtubule and myelin networks are disrupted, thus recapitulating a pathological hallmark of MSA, in a manner totally dependent upon the seeding of endogenous aSyn. Furthermore, using oligodendroglial and primary cortical cultures, we demonstrated that pathology-related S129 aSyn phosphorylation depends on aSyn and p25α protein load and may involve different aSyn "strains" present in oligodendroglial and neuronal synucleinopathies. Importantly, this hypothesis was further supported by data obtained from human post-mortem brain material derived from patients with MSA and dementia with Lewy bodies. Finally, delivery of haSyn PFFs into the mouse brain led to the formation of aberrant aSyn forms, including the endogenous protein, within oligodendroglia and evoked myelin decompaction in WT mice, but not in KO-aSyn mice. This line of research highlights the role of endogenous aSyn and p25α in the formation of pathological aSyn assemblies in oligodendrocytes and provides in vivo evidence of the contribution of oligodendroglial aSyn in the establishment of aSyn pathology in MSA

    Correction to: Endogenous oligodendroglial alpha-synuclein and TPPP/p25α orchestrate alpha-synuclein pathology in experimental multiple system atrophy models (Acta Neuropathologica, (2019), 138, 3, (415-441), 10.1007/s00401-019-02014-y)

    No full text
    The original version of this article unfortunately contained a mistake. The following text was missing in the acknowledgements section. "This research is co-financed by Greece and the European Union (European Social Fund—ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (IKY).". © 2019, Springer-Verlag GmbH Germany, part of Springer Nature
    corecore