24,292 research outputs found

    Element Abundance Determination in Hot Evolved Stars

    Full text link
    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.Comment: To appear in: Recent Advances in Spectroscopy: Theoretical, Astrophysical, and Experimental Perspectives, Proceedings, Jan 28 - 31, 2009, Kodaikanal, India (Springer

    Deposing the Cool Corona of KPD 0005+5106

    Full text link
    The ROSAT PSPC pulse height spectrum of the peculiar He-rich hot white dwarf KPD 0005+5106 provided a great surprise when first analysed by Fleming, Werner & Barstow (1993). It defied the best non-LTE modelling attempts in terms of photospheric emission from He-dominated atmospheres including C, N and O and was instead interpreted as the first evidence for a coronal plasma around a white dwarf. We show here that a recent high resolution Chandra LETGS spectrum has more structure than expected from a thermal bremsstrahlung continuum and lacks the narrow lines of H-like and He-like C expected from a coronal plasma. Moreover, a coronal model requires a total luminosity more than two orders of magnitude larger than that of the star itself. Instead, the observed 20-80 AA flux is consistent with photospheric models containing trace amounts of heavier elements such as Fe. The soft X-ray flux is highly sensitive to the adopted metal abundance and provides a metal abundance diagnostic. The weak X-ray emission at 1 keV announced by O'Dwyer et al (2003) instead cannot arise from the photosphere and requires alternative explanations. We echo earlier speculation that such emission arises in a shocked wind. Despite the presence of UV-optical O VIII lines from transitions between levels n=7-10, no X-ray O VIII Ly alpha flux is detected. We show that O VIII Lyman photons can be trapped by resonant scattering within the emitting plasma and destroyed by photoelectric absorption.Comment: 15 Pages, 4 figures. Accepted for the Astrophysical Journa

    Quark-Gluon-Plasma Formation at SPS Energies?

    Get PDF
    By colliding ultrarelativistic ions, one achieves presently energy densities close to the critical value, concerning the formation of a quark-gluon-plasma. This indicates the importance of fluctuations and the necessity to go beyond the investigation of average events. Therefore, we introduce a percolation approach to model the final stage (Ď„>1\tau > 1 fm/c) of ion-ion collisions, the initial stage being treated by well-established methods, based on strings and Pomerons. The percolation approach amounts to finding high density domains, and treating them as quark-matter droplets. In this way, we have a {\bf realistic, microscopic, and Monte--Carlo based model which allows for the formation of quark matter.} We find that even at SPS energies large quark-matter droplets are formed -- at a low rate though. In other words: large quark-matter droplets are formed due to geometrical fluctuation, but not in the average event.Comment: 7 Pages, HD-TVP-94-6 (1 uuencoded figure

    Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries

    Full text link
    Context: Colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativistic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy gamma-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Aims: We strive to find evidence of gamma-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting gamma-rays. We make a comparison with existing gamma-ray flux predictions and investigate possible constraints. Methods: We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. Results: We find no evidence of gamma-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi-LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi-LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB eta Car is made.Comment: 9 pages, 3 figure

    Equilibrium states and invariant measures for random dynamical systems

    Full text link
    Random dynamical systems with countably many maps which admit countable Markov partitions on complete metric spaces such that the resulting Markov systems are uniformly continuous and contractive are considered. A non-degeneracy and a consistency conditions for such systems, which admit some proper Markov partitions of connected spaces, are introduced, and further sufficient conditions for them are provided. It is shown that every uniformly continuous Markov system associated with a continuous random dynamical system is consistent if it has a dominating Markov chain. A necessary and sufficient condition for the existence of an invariant Borel probability measure for such a non-degenerate system with a dominating Markov chain and a finite (16) is given. The condition is also sufficient if the non-degeneracy is weakened with the consistency condition. A further sufficient condition for the existence of an invariant measure for such a consistent system which involves only the properties of the dominating Markov chain is provided. In particular, it implies that every such a consistent system with a finite Markov partition and a finite (16) has an invariant Borel probability measure. A bijective map between these measures and equilibrium states associated with such a system is established in the non-degenerate case. Some properties of the map and the measures are given.Comment: The article is published in DCDS-A, but without the 3rd paragraph on page 4 (the complete removal of the paragraph became the condition for the publication in the DCDS-A after the reviewer ran out of the citation suggestions collected in the paragraph

    Chandra and FUSE spectroscopy of the hot bare stellar core H1504+65

    Full text link
    H1504+65 is an extremely hot hydrogen-deficient white dwarf with an effective temperature close to 200,000 K. We present new FUV and soft X-ray spectra obtained with FUSE and Chandra, which confirm that H1504+65 has an atmosphere primarily composed of carbon and oxygen. The Chandra LETG spectrum (60-160 Angstroem) shows a wealth of photospheric absorption lines from highly ionized oxygen, neon, and - for the first time identified in this star - magnesium and suggests relatively high Ne and Mg abundances. This corroborates an earlier suggestion that H1504+65 represents a naked C/O stellar core or even the C/O envelope of an O-Ne-Mg white dwarf.Comment: 15 pages, 10 figures, accepted for publication in A&

    High-precision Atomic Physics Laboratories in Space: White Dwarfs and Subdwarfs

    Get PDF
    The 21st European Workshop on White Dwarfs was held in Austin, TX from July 23rd to 27th of 2018Stellar atmospheres are prime laboratories to determine atomic properties of highly ionized species. Reliable opacities are crucial ingredients for the calculation of stellar atmospheres of white dwarfs and subdwarfs. A detailed investigation on the precision of many iron-group oscillator strengths is still outstanding. To make progress, we used the Hubble Space Telescope Imaging Spectrograph to measure high-resolution spectra of three hot subdwarfs that exhibit extremely high iron-group abundances. The predicted relative strengths of the identified lines are compared with the observations to judge the quality of Kurucz’s line data and to determine correction factors for abundance determinations of the respective elements.Astronom

    Assessment of on-farm, market and wild food diversity in three agro-ecological zones of Western Kenya

    Get PDF
    Poster presented at Tropentag 2014. International Conference on Research on Food Security, Natural Resource Management and Rural Development. "Bridging the Gap between Increasing Knowledge and Decreasing Resources" Prague (Czech Republic) Sep 17-19 2014

    Effect of long range forces on the interfacial profiles in thin binary polymer films

    Full text link
    We study the effect of surface fields on the interfacial properties of a binary polymer melt confined between two parallel walls. Each wall attracts a different component of the blend by a non-retarded van der Waals potential. An interface which runs parallel to the surfaces is stabilized in the center of the film. Using extensive Monte Carlo simulations we study the interfacial properties as a function of the film thickness, the strength of the surface forces and the lateral size over which the profiles across the film are averaged. We find evidence for capillary wave broadening of the apparent interfacial profiles. However, the apparent interfacial width cannot be described quantitatively by a simple logarithmic dependence on the film thickness. The Monte Carlo simulations reveal that the surface fields give rise to an additional reduction of the intrinsic interfacial width and an increase of the effective interfacial tension upon decreasing the film thickness. These modifications of the intrinsic interfacial properties are confirmed by self-consistent field calculations. Taking account of the thickness dependence of the intrinsic interfacial properties and the capillary wave broadening, we can describe our simulation results quantitatively.Comment: to appear in J.Chem.Phy
    • …
    corecore