39,403 research outputs found
A simulation model for wind energy storage systems. Volume 1: Technical report
A comprehensive computer program for the modeling of wind energy and storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic) was developed. The level of detail of Simulation Model for Wind Energy Storage (SIMWEST) is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. The first program is a precompiler which generates computer models (in FORTRAN) of complex wind source storage application systems, from user specifications using the respective library components. The second program provides the techno-economic system analysis with the respective I/O, the integration of systems dynamics, and the iteration for conveyance of variables. SIMWEST program, as described, runs on the UNIVAC 1100 series computers
Exact States in Waveguides With Periodically Modulated Nonlinearity
We introduce a one-dimensional model based on the nonlinear
Schrodinger/Gross-Pitaevskii equation where the local nonlinearity is subject
to spatially periodic modulation in terms of the Jacobi dn function, with three
free parameters including the period, amplitude, and internal form-factor. An
exact periodic solution is found for each set of parameters and, which is more
important for physical realizations, we solve the inverse problem and predict
the period and amplitude of the modulation that yields a particular exact
spatially periodic state. Numerical stability analysis demonstrates that the
periodic states become modulationally unstable for large periods, and regain
stability in the limit of an infinite period, which corresponds to a bright
soliton pinned to a localized nonlinearity-modulation pattern. Exact
dark-bright soliton complex in a coupled system with a localized modulation
structure is also briefly considered . The system can be realized in planar
optical waveguides and cigar-shaped atomic Bose-Einstein condensates.Comment: EPL, in pres
Observation of the single-electron regime in a highly tunable silicon quantum dot
We report on low-temperature electronic transport measurements of a silicon
metal-oxide-semiconductor quantum dot, with independent gate control of
electron densities in the leads and the quantum dot island. This architecture
allows the dot energy levels to be probed without affecting the electron
density in the leads, and vice versa. Appropriate gate biasing enables the dot
occupancy to be reduced to the single-electron level, as evidenced by
magnetospectroscopy measurements of the ground state of the first two charge
transitions. Independent gate control of the electron reservoirs also enables
discrimination between excited states of the dot and density of states
modulations in the leads.Comment: 4 pages, 3 figures, accepted for Applied Physics Letter
Black plane solutions in four dimensional spacetimes
The static, plane symmetric solutions and cylindrically symmetric solutions
of Einstein-Maxwell equations with a negative cosmological constant are
investigated. These black configurations are asymptotically anti-de Sitter not
only in the transverse directions, but also in the membrane or string
directions. Their causal structure is similar to that of Reissner-Nordstr\"{o}m
black holes, but their Hawking temperature goes with , where is
the ADM mass density. We also discuss the static plane solutions in
Einstein-Maxwell-dilaton gravity with a Liouville-type dilaton potential. The
presence of the dilaton field changes drastically the structure of solutions.
They are asymptotically ``anti-de Sitter'' or ``de Sitter'' depending on the
parameters in the theory.Comment: 8 pages, RevTex, to appear in Phys. Rev.
Temporal trends and transport within and around the Antarctic polar vortex during the formation of the 1987 Antarctic ozone hole
During AAOE in 1987 an ER-2 high altitude aircraft made twelve flights out of Punta Arenas, Chile (53 S, 71 W) into the Antarctic polar vortex. The aircraft was fitted with fast response instruments for in situ measurements of many trace species including O3, ClO, BrO, NO sub y, NO, H2O, and N2O. Grab samples of long-lived tracers were also taken and a scanning microwave radiometer measured temperatures above and below the aircraft. Temperature, pressure, and wind measurements were also made on the flight tracks. Most of these flights were flown to 72 S, at a constant potential temperature, followed by a dip to a lower altitude and again assuming a sometimes different potential temperature for the return leg. The potential temperature chosen was 425 K (17 to 18 km) on 12 of the flight legs, and 5 of the flight legs were flown at 450 K (18 to 19 km). The remaining 7 legs of the 12 flights were not flown on constant potential temperature surfaces. Tracer data have been analyzed for temporal trends. Data from the ascents out of Punta Arenas, the constant potential temperature flight legs, and the dips within the vortex are used to compare tracer values inside and outside the vortex, both with respect to constant potential temperature and constant N2O. The time trend during the one-month period of August 23 through September 22, 1987, shows that ozone decreased by 50 percent or more at altitudes form 15 to 19 km. This trend is evident whether analyzed with respect to constant potential temperature or constant N2O. The trend analysis for ozone outside the vortex shows no downward trend during this period. The analysis for N2O at a constant potential temperature indicates no significant trend either inside or outside the vortex; however, a decrease in N2O with an increase in latitude is evident
Unique gap structure and symmetry of the charge density wave in single-layer VSe
Single layers of transition metal dichalcogenides (TMDCs) are excellent
candidates for electronic applications beyond the graphene platform; many of
them exhibit novel properties including charge density waves (CDWs) and
magnetic ordering. CDWs in these single layers are generally a planar
projection of the corresponding bulk CDWs because of the quasi-two-dimensional
nature of TMDCs; a different CDW symmetry is unexpected. We report herein the
successful creation of pristine single-layer VSe, which shows a () CDW in contrast to the (4 4) CDW for the layers in
bulk VSe. Angle-resolved photoemission spectroscopy (ARPES) from the single
layer shows a sizable () CDW gap of 100 meV at the
zone boundary, a 220 K CDW transition temperature twice the bulk value, and no
ferromagnetic exchange splitting as predicted by theory. This robust CDW with
an exotic broken symmetry as the ground state is explained via a
first-principles analysis. The results illustrate a unique CDW phenomenon in
the two-dimensional limit
Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)
Current atmospheric models do not include secondary
organic aerosol (SOA) production from gas-phase reactions
of polycyclic aromatic hydrocarbons (PAHs). Recent
studies have shown that primary emissions undergo oxidation
in the gas phase, leading to SOA formation. This
opens the possibility that low-volatility gas-phase precursors
are a potentially large source of SOA. In this work,
SOA formation from gas-phase photooxidation of naphthalene,
1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-
MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in
the Caltech dual 28-m^3 chambers. Under high-NO_x conditions
and aerosol mass loadings between 10 and 40μgm^(−3),
the SOA yields (mass of SOA per mass of hydrocarbon reacted)
ranged from 0.19 to 0.30 for naphthalene, 0.19 to 0.39
for 1-MN, 0.26 to 0.45 for 2-MN, and constant at 0.31 for
1,2-DMN. Under low-NO_x conditions, the SOA yields were
measured to be 0.73, 0.68, and 0.58, for naphthalene, 1-
MN, and 2-MN, respectively. The SOA was observed to be
semivolatile under high-NO_x conditions and essentially nonvolatile
under low-NO_x conditions, owing to the higher fraction
of ring-retaining products formed under low-NO_x conditions.
When applying these measured yields to estimate
SOA formation from primary emissions of diesel engines
and wood burning, PAHs are estimated to yield 3–5 times
more SOA than light aromatic compounds over photooxidation
timescales of less than 12 h. PAHs can also account for
up to 54% of the total SOA from oxidation of diesel emissions,
representing a potentially large source of urban SOA
Assessing Regulatory Impact Analyses: The Failure of Agencies to Comply With Executive Order 12,866
None.Environment, Health and Safety, Regulatory Reform
- …