2,937 research outputs found

    Raoult's Formalism in Understanding Low Temperature Growth of GaN Nanowires using Binary Precursor

    Full text link
    Growth of GaN nanowires are carried out via metal initiated vapor-liquid-solid mechanism, with Au as the catalyst. In chemical vapour deposition technique, GaN nanowires are usually grown at high temperatures in the range of 900-1100 ^oC because of low vapor pressure of Ga below 900 ^oC. In the present study, we have grown the GaN nanowires at a temperature, as low as 700 ^oC. Role of indium in the reduction of growth temperature is discussed in the ambit of Raoult's law. Indium is used to increase the vapor pressure of the Ga sufficiently to evaporate even at low temperature initiating the growth of GaN nanowires. In addition to the studies related to structural and vibrational properties, optical properties of the grown nanowires are also reported for detailed structural analysis.Comment: 24 pages, 7 figures, journa

    Localized Charge Transfer Process and Surface Band Bending in Methane Sensing by GaN Nanowires

    Full text link
    The physicochemical processes at the surfaces of semiconductor nanostructures involved in electrochemical and sensing devices are strongly influenced by the presence of intrinsic or extrinsic defects. To reveal the surface controlled sensing mechanism, intentional lattice oxygen defects are created on the surfaces of GaN nanowires for the elucidation of charge transfer process in methane (CH4) sensing. Experimental and simulation results of electron energy loss spectroscopy (EELS) studies on oxygen rich GaN nanowires confirmed the possible presence of 2(ON) and VGa-3ON defect complexes. A global resistive response for sensor devices of ensemble nanowires and a localized charge transfer process in single GaN nanowires are studied in situ scanning by Kelvin probe microscopy (SKPM). A localized charge transfer process, involving the VGa-3ON defect complex on nanowire surface is attributed in controlling the global gas sensing behavior of the oxygen rich ensemble GaN nanowires.Comment: 42 pages, 6 figures, Journa
    • …
    corecore