326 research outputs found

    Resummations in Hot Scalar Electrodynamics

    Full text link
    The gauge-boson sector of perturbative scalar electrodynamics is investigated in detail as a testing ground for resummation methods in hot gauge theories. It also serves as a simple non-trivial reference system for the non-Abelian gluon plasma. The complete next-to-leading order contributions to the polarization tensor are obtained within the resummation scheme of Braaten and Pisarski. The simpler scheme proposed recently by Arnold and Espinosa is shown to apply to static quantities only, whereas Braaten-Pisarski resummation turns out to need modification for collective phenomena close to the light-cone. Finally, a recently proposed resummation of quasi-particle damping contributions is assessed critically.Comment: 53 p. LaTeX, 7 figs. (2 in LaTeX, 5 EPS appended as uu-encoded file), ITP-UH-01/94 & DESY 94-03

    Effects of weak self-interactions in a relativistic plasma on cosmological perturbations

    Full text link
    The exact solutions for linear cosmological perturbations which have been obtained for collisionless relativistic matter within thermal field theory are extended to a self-interacting case. The two-loop contributions of scalar λϕ4\lambda\phi^4 theory to the thermal graviton self-energy are evaluated, which give the O(λ)O(\lambda) corrections in the perturbation equations. The changes are found to be perturbative on scales comparable to or larger than the Hubble horizon, but the determination of the large-time damping behavior of subhorizon perturbations requires a resummation of thermally induced masses.Comment: 11 pages, REVTEX, 4 postscript figures included by epsf.sty - expanded version (more details on the resummation of thermal masses which is required for the late-time damping behaviour

    Topological-charge anomalies in supersymmetric theories with domain walls

    Full text link
    Domain walls in 1+2 dimensions are studied to clarify some general features of topological-charge anomalies in supersymmetric theories, by extensive use of a superfield supercurrent. For domain walls quantum modifications of the supercharge algebra arise not only from the short-distance anomaly but also from another source of long-distance origin, induced spin in the domain-wall background, and the latter dominates in the sum. A close look into the supersymmetric trace identity, which naturally accommodates the central-charge anomaly and its superpartners, shows an interesting consequence of the improvement of the supercurrent: Via an improvement the anomaly in the central charge can be transferred from induced spin in the fermion sector to an induced potential in the boson sector. This fact reveals a dual character, both fermionic and bosonic, of the central-charge anomaly, which reflects the underlying supersymmetry. The one-loop superfield effective action is also constructed to verify the anomaly and BPS saturation of the domain-wall spectrum.Comment: 8 pages, Revte

    The gravitational polarization tensor of thermal λϕ4\lambda\phi^4 theory

    Full text link
    The low-momentum structure of the gravitational polarization tensor of an ultrarelativistic plasma of scalar particles with λϕ4\lambda\phi^4 interactions is evaluated in a two-loop calculation up to and including order λ3/2\lambda^{3/2}. This turns out to require an improved perturbation theory which resums a local thermal mass term as well as nonlocal hard-thermal-loop vertices of scalar and gravitational fields.Comment: 15 pages and 6 figures, uu-encoded postscript fil

    The pressure of deconfined QCD for all temperatures and quark chemical potentials

    Full text link
    We present a new method for the evaluation of the perturbative expansion of the QCD pressure which is valid at all values of the temperature and quark chemical potentials in the deconfined phase and which we work out up to and including order g^4 accuracy. Our calculation is manifestly four-dimensional and purely diagrammatic -- and thus independent of any effective theory descriptions of high temperature or high density QCD. In various limits, we recover the known results of dimensional reduction and the HDL and HTL resummation schemes, as well as the equation of state of zero-temperature quark matter, thereby verifying their respective validity. To demonstrate the overlap of the various regimes, we furthermore show how the predictions of dimensional reduction and HDL resummed perturbation theory agree in the regime T~\sqrt{g}*mu. At parametrically smaller temperatures T~g*mu, we find that the dimensional reduction result agrees well with those of the nonstatic resummations down to the remarkably low value T~0.2 m_D, where m_D is the Debye mass at T=0. Beyond this, we see that only the latter methods connect smoothly to the T=0 result of Freedman and McLerran, to which the leading small-T corrections are given by the so-called non-Fermi-liquid terms, first obtained through HDL resummations. Finally, we outline the extension of our method to the next order, where it would include terms for the low-temperature entropy and specific heats that are unknown at present.Comment: 45 pages, 21 figures; v2: minor corrections and clarifications, references added; v3: Fig 16 added, version accepted for publication in PR

    The dynamics of cosmological perturbations in thermal λϕ4\lambda\phi^4 theory

    Full text link
    Using a recent thermal-field-theory approach to cosmological perturbations, the exact solutions that were found for collisionless ultrarelativistic matter are generalized to include the effects from weak self-interactions in a λϕ4\lambda\phi^4 model through order λ3/2\lambda^{3/2}. This includes the effects of a resummation of thermal masses and associated nonlocal gravitational vertices, thus going far beyond classical kinetic theory. Explicit solutions for all the scalar, vector, and tensor modes are obtained for a radiation-dominated Einstein-de Sitter model containing a weakly interacting scalar plasma with or without the admixture of an independent component of perfect radiation fluid.Comment: 32 pages, REVTEX, 13 postscript figures included by epsf.st

    Radiative heavy quark energy loss in a dynamical QCD medium

    Full text link
    The computation of radiative energy loss in a dynamically screened QCD medium is a key ingredient for obtaining reliable predictions for jet quenching in ultra-relativistic heavy ion collisions. We calculate, to first order in the opacity, the energy loss suffered by a heavy quark traveling through an infinite and time-independent QCD medium and show that the result for a dynamical medium is almost twice that obtained previously for a medium consisting of randomly distributed static scattering centers. A quantitative description of jet suppression in RHIC and LHC experiments thus must correctly account for the dynamics of the medium's constituents.Comment: 21 pages, 14 figures, submitted to Physical Review

    Central charge and renormalization in supersymmetric theories with vortices

    Full text link
    Some quantum features of vortices in supersymmetric theories in 1+2 dimensions are studied in a manifestly supersymmetric setting of the superfield formalism. A close examination of the supercurrent that accommodates the central charge and super-Poincare charges in a supermultiplet reveals that there is no genuine quantum anomaly in the supertrace identity and in the supercharge algebra, with the central-charge operator given by the bare Fayet-Iliopoulos term alone. The central charge and the vortex spectrum undergo renormalization on taking the expectation value of the central-charge operator. It is shown that the vortex spectrum is exactly determined at one loop while the spectrum of the elementary excitations receives higher-order corrections.Comment: 9 pages, revte

    Perturbative QCD at non-zero chemical potential: Comparison with the large-Nf limit and apparent convergence

    Full text link
    The perturbative three-loop result for the thermodynamic potential of QCD at finite temperature and chemical potential as obtained in the framework of dimensional reduction is compared with the exact result in the limit of large flavor number. The apparent convergence of the former as well as possibilities for optimization are investigated. Corresponding optimized results for full QCD are given for the case of two massless quark flavors.Comment: REVTEX4, 4 pages, 3 color figures. v2: fig. 3 now includes also lattice data for two-flavor QCD at nonzero chemical potentia
    corecore