25 research outputs found

    New aspects and strategies for methane mitigation from ruminants.

    Get PDF
    The growing demand for sustainable animal production is compelling researchers to explore the potential approaches to reduce emissions of greenhouse gases from livestock that are mainly produced by enteric fermentation. Some potential solutions, for instance, the use of chemical inhibitors to reduce methanogenesis, are not feasible in routine use due to their toxicity to ruminants, inhibition of efficient rumen function or other transitory effects. Strategies, such as use of plant secondary metabolites and dietary manipulations have emerged to reduce the methane emission, but these still require extensive research before these can be recommended and deployed in the livestock industry sector. Furthermore, immunization vaccines for methanogens and phages are also under investigation for mitigation of enteric methanogenesis. The increasing knowledge of methanogenic diversity in rumen, DNA sequencing technologies and bioinformatics have paved the way for chemogenomic strategies by targeting methane producers. Chemogenomics will help in finding target enzymes and proteins, which will further assist in the screening of natural as well chemical inhibitors. The construction of a methanogenic gene catalogue through these approaches is an attainable objective. This will lead to understand the microbiome function, its relation with the host and feeds, and therefore, will form the basis of practically viable and eco-friendly methane mitigation approaches, while improving the ruminant productivity

    PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi:Insights, Challenges, and Opportunities

    Get PDF
    Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit

    Ozone: A Potent Disinfectant for Application in Food Industry -An Overview

    No full text
    504-509With the emergence of new microbial strains like Listeria, virulent E. coli, assorted viruses and accumulation of toxic chemicals in environment increased attention has been given to the safe use of sanitizers, bleaching agents, pesticides, etc., in industrial processing. The food industry, in particular, is in search of disinfectants that are effective against pathogens and are safe to use in specific applications. Ozone (O3), is effective against majority of microorganisms tested and its applications in the food industry are related to decontamination of product surface and water treatment. Ozone has been used with success to inactivate contaminant micro flora on meat, fruits, vegetables, and dry foods. Excessive use of ozone, however, may cause oxidation of some ingredients on food surface. Additional research is needed to optimize its use in food applications. The paper reviews the various aspects of ozone as a disinfectant for different applications in food industry

    <i><span style="font-size:12.0pt;line-height: 115%;font-family:"Times New Roman";mso-fareast-font-family:"Times New Roman"; mso-ansi-language:EN-IN;mso-fareast-language:EN-IN;mso-bidi-language:HI" lang="EN-IN">In vitro</span></i><span style="font-size:12.0pt;line-height:115%; font-family:"Times New Roman";mso-fareast-font-family:"Times New Roman"; mso-ansi-language:EN-IN;mso-fareast-language:EN-IN;mso-bidi-language:HI" lang="EN-IN"> degradation of cell-wall and digestibility of cereal straws treated with anaerobic ruminal fungi</span>

    No full text
    636-638<span style="font-size:12.0pt;line-height: 115%;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:hi"="" lang="EN-IN">Ruminal fungal isolates (Orpinomyces sp. ; C-14, Piromyces sp. ; C-15 , Orpinomyces sp.; B-13 and Anaeromyces sp.; B-6), were evaluated under anoxic conditions for their effect on in vitro dry matter digestibility, neutral detergent fibre, acid detergent fibre and acid detergent li gnin using rice and wheat straw as substrate. There was no significant effect of the fungal isolates on the disappearance of the substrates along with rumen liquor when compared to control. The doses of 106 cfu/ ml of the isolate were found to have maximum degradation of straws in comparison to the doses of 103 cfu/ml.</span

    Gastrointestinal stress as innate defence against microbial attack.

    No full text
    A comparison of the metabolic response of Escherichia coli BL21 (DE3) towards the production of human basic fibroblast growth factor (hFGF-2) or towards carbon overfeeding revealed similarities which point to constraints in anabolic pathways. Contrary to expectations, neither energy generation (e.g., ATP) nor provision of precursor molecules for nucleotides (e.g., uracil) and amino acids (e.g., pyruvate, glutamate) limit host cell and plasmid-encoded functions. Growth inhibition is assumed to occur when hampered anabolic capacities do not match with the ongoing and overwhelming carbon catabolism. Excessive carbon uptake leads to by-product secretion, for example, pyruvate, acetate, glutamate, and energy spillage, for example, accumulation and degradation of adenine nucleotides with concomitant accumulation of extracellular hypoxanthine. The cellular response towards compromised anabolic capacities involves downregulation of cAMP formation, presumably responsible for subsequently better-controlled glucose uptake and resultant accumulation of glucose in the culture medium. Growth inhibition is neglectable under conditions of reduced carbon availability when hampered anabolic capacities also match with catabolic carbon processing. The growth inhibitory effect with accompanying energy spillage, respectively, hypoxanthine secretion and cessation of cAMP formation is not unique to the production of hFGF-2 but observed during the production of other proteins and also during overexpression of genes without transcript translation
    corecore