1,086 research outputs found

    Magneto-optical evidence of the percolation nature of the metal-insulator transition in the 2D electron system

    Get PDF
    We compare the results of the transport and time-resolved magneto-luminescence measurements in disordered 2D electron systems in GaAs-AlGaAs heterostructures in the extreme quantum limit, in particular, in the vicinity of the metal-insulator transition (MIT). At filling factors ν<1\nu <1, the optical signal has two components: the single-rate exponentially decaying part attributed to a uniform liquid and a power-law long-living tail specific to a microscopically inhomogeneous state of electrons. We interprete this result as a separation of the 2D electron system into a liquid and localized phases, especially because the MIT occurs strikingly close to those filling factors where the liquid occupies 12{1\over 2} of the sample area (the percollation threshold condition in two-component media).Comment: 5 pages RevTex + 4 fig., to appear in PRB, Rapid Com

    Extra Spin-Wave mode in Quantum Hall systems. Beyond the Skyrmion Limit

    Full text link
    We report on the observation of a new spin mode in a quantum Hall system in the vicinity of odd electron filling factors under experimental conditions excluding the possibility of Skyrmion excitations. The new mode having presumably zero energy at odd filling factors emerges at small deviations from odd filling factors and couples to the spin-exciton. The existence of an extra spin mode assumes a nontrivial magnetic order at partial fillings of Landau levels surrounding quantum Hall ferromagnets other then the Skyrmion crystal.Comment: 9 pages, 4 figure

    The Cyclotron Spin-Flip Mode as the Lowest-Energy Excitation of Unpolarized Integer Quantum Hall States

    Full text link
    The cyclotron spin-flip modes of spin unpolarized integer quantum Hall states (ν=2,4\nu =2,4) have been studied with inelastic light scattering. The energy of these modes is significantly smaller compared to the bare cyclotron gap. Second order exchange corrections are held responsible for a negative energy contribution and render these modes the lowest energy excitations of unpolarized integer quantum Hall states.Comment: Published: Phys. Rev. B 72, 073304 (2005

    Electrically-Controlled Nuclear Spin Polarization and Relaxation by Quantum-Hall states

    Full text link
    We investigate interactions between electrons and nuclear spins by using the resistance (Rxx) peak which develops near filling factor n = 2/3 as a probe. By temporarily tuning n to a different value, ntemp, with a gate, the Rxx peak is shown to relax quickly on both sides of ntemp = 1. This is due to enhanced nuclear spin relaxation by Skyrmions, and demonstrates the dominant role of nuclear spin in the transport anomaly near n = 2/3. We also observe an additional enhancement in the nuclear spin relaxation around n = 1/2 and 3/2, which suggests a Fermi sea of partially-polarized composite fermions.Comment: 6 pages, 3 figure

    Harmonic Solid Theory of Photoluminescence in the High Field Two-Dimensional Wigner Crystal

    Full text link
    Motivated by recent experiments on radiative recombination of two-dimensional electrons in acceptor doped GaAs-AlGaAs heterojunctions as well as the success of a harmonic solid model in describing tunneling between two-dimensional electron systems, we calculate within the harmonic approximation and the time dependent perturbation theory the line shape of the photoluminescence spectrum corresponding to the recombination of an electron with a hole bound to an acceptor atom. The recombination process is modeled as a sudden perturbation of the Hamiltonian for the in-plane degrees of freedom of the electron. We include in the perturbation, in addition to changes in the equilibrium positions of electrons, changes in the curvatures of the harmonically approximated potential. The computed spectra have line shapes similar to that seen in a recent experiment. The spectral width, however, is roughly a factor of 3 smaller than that seen in experiment if one assumes a perfect Wigner crystal for the initial state state of the system, whereas a simple random disorder model yields a width a factor of 3 too large. We speculate on the possible mechanisms that may lead to better quantitative agreement with experiment.Comment: 22 pages, RevTex, 8 figures. Submitted to the Physical Review

    Upper bounds on the density of states of single Landau levels broadened by Gaussian random potentials

    Full text link
    We study a non-relativistic charged particle on the Euclidean plane R^2 subject to a perpendicular constant magnetic field and an R^2-homogeneous random potential in the approximation that the corresponding random Landau Hamiltonian on the Hilbert space L^2(R^2) is restricted to the eigenspace of a single but arbitrary Landau level. For a wide class of Gaussian random potentials we rigorously prove that the associated restricted integrated density of states is absolutely continuous with respect to the Lebesgue measure. We construct explicit upper bounds on the resulting derivative, the restricted density of states. As a consequence, any given energy is seen to be almost surely not an eigenvalue of the restricted random Landau Hamiltonian.Comment: 16 pages, to appear in "Journal of Mathematical Physics

    Magnetic phenomena at and near nu =1/2 and 1/4: theory, experiment and interpretation

    Full text link
    I show that the hamiltonian theory of Composite Fermions (CF) is capable of yielding a unified description in fair agreement with recent experiments on polarization P and relaxation rate 1/T_1 in quantum Hall states at filling nu = p/(2ps+1), at and near nu = 1/2 and 1/4, at zero and nonzero temperatures. I show how rotational invariance and two dimensionality can make the underlying interacting theory behave like a free one in a limited context.Comment: Latex 4 pages, 2 figure
    • …
    corecore