6,548 research outputs found
Ultra cold neutron trap as a tool to search for dark matter with long-range radius of forces
The problem of possible application of an ultracold neutron (UCN) trap as a
detector of dark matter particles with long-range radius of forces has been
considered. Transmission of small recoil energy in scattering is a
characteristic of long-range forces. The main advantage of the ultracold
neutron technique lies in possibility of detecting recoil energy as small as
eV. Here are presented constraints on the interaction potential
parameters: for dark matter particles and
neutrons, as well as on the density value of long-range dark matter on the
Earth. The possible mechanism of accumulation of long-range dark matter on the
Earth surface is considered and the factor of density increase on the Earth
surface is evaluated. The results of the first experiment on search of
astronomical day variation of ultracold neutron storage time are under
discussion.Comment: 17 pages, 19 figures. arXiv admin note: substantial text overlap with
arXiv:1109.339
Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method
A new spectral particle-in-cell (PIC) method for plasma modeling is presented
and discussed. In the proposed scheme, the Fourier-Bessel transform is used to
translate the Maxwell equations to the quasi-cylindrical spectral domain. In
this domain, the equations are solved analytically in time, and the spatial
derivatives are approximated with high accuracy. In contrast to the
finite-difference time domain (FDTD) methods that are commonly used in PIC, the
developed method does not produce numerical dispersion, and does not involve
grid staggering for the electric and magnetic fields. These features are
especially valuable in modeling the wakefield acceleration of particles in
plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the
test simulations of laser plasma interactions are compared to the ones done
with the quasi-cylindrical FDTD PIC code CALDER-CIRC.Comment: submitted to Phys. Plasma
Radio holographic filtering, error estimation, and quality control of radio occultation data
Processing of radio occultation data requires filtering and quality control for the noise reduction and sorting out corrupted data samples. We introduce a radio holographic filtering algorithm based on the synthesis of canonical transform (CT2) and radio holographic focused synthesized aperture (RHFSA) methods. The field in the CT2-transformed space is divided by a reference signal to subtract the regular phase variation and to compress the spectrum. Next, it is convolved with a Gaussian filter window and multiplied by the reference signal to restore the phase variation. This algorithm is simple to implement, and it is numerically efficient. Numerical simulation of processing radio occultations with a realistic receiver noise indicates a good performance of the method. We introduce a new technique of the error estimation of retrieved bending angle profiles based on the width of the running spectra of the transformed wavefield multiplied with the reference signal. We describe a quality control method for the discrimination of corrupted samples in the L2 channel, which is most susceptible to signal tracking errors. We apply the quality control and error estimation techniques for the processing of data acquired by Challenging Minisatellite Payload (CHAMP) and perform a statistical comparison of CHAMP data with the analyses of the German Weather Service (DWD). The statistical analysis shows a good agreement between the CHAMP and DWD error estimates and the observed CHAMP–DWD differences. This corroborates the efficiency of the proposed quality control and error estimation techniques
Exciton correlations in coupled quantum wells and their luminescence blue shift
In this paper we present a study of an exciton system where electrons and
holes are confined in double quantum well structures. The dominating
interaction between excitons in such systems is a dipole - dipole repulsion. We
show that the tail of this interaction leads to a strong correlation between
excitons and substantially affects the behavior of the system. Making use of
qualitative arguments and estimates we develop a picture of the exciton -
exciton correlations in the whole region of temperature and concentration where
excitons exist. It appears that at low concentration degeneracy of the excitons
is accompanied with strong multi-particle correlation so that the system cannot
be considered as a gas. At high concentration the repulsion suppresses the
quantum degeneracy down to temperatures that could be much lower than in a Bose
gas with contact interaction. We calculate the blue shift of the exciton
luminescence line which is a sensitive tool to observe the exciton - exciton
correlations.Comment: 27 pages in PDF and DVI format, 8 figure
String-inspired cosmology
I discuss cosmological models either derived from, or inspired by, string
theory or M-theory. In particular I discuss solutions in the low-energy
effective theory and the role of the dilaton, moduli and antisymmetric form
fields in the dimensionally reduced effective action. The pre big bang model is
an attempt to use cosmological solutions to make observational predictions. I
then discuss the effective theory of gravity found in recent brane-world models
where we live on a 3-brane embedded in a five-dimensional spacetime and how the
study of cosmological perturbations may enable us to test these ideas.Comment: 15 pages, 5 figures, latex with iopart, invited talk at `The Early
Universe and Cosmological Observations: a Critical Review', Cape Town, July
200
High domain wall velocities due to spin currents perpendicular to the plane
We consider long and narrow spin valves composed of a first magnetic layer
with a single domain wall (DW), a normal metal spacer and a second magnetic
layer that is a planar or a perpendicular polarizer. For these structures, we
study numerically DW dynamics taking into account the spin torques due to the
perpendicular spin currents. We obtain high DW velocities: 50 m/s for planar
polarizer and 640 m/s for perpendicular polarizer for J = 5*10^6 A/cm^2. These
values are much larger than those predicted and observed for DW motion due to
the in-plane spin currents. The ratio of the magnitudes of the torques, which
generate the DW motion in the respective cases, is responsible for these large
differences.Comment: 10 pages, 2 figure
Quantum Criticality of an Ising-like Spin-1/2 Antiferromagnetic Chain in Transverse Magnetic Field
We report on magnetization, sound velocity, and magnetocaloric-effect
measurements of the Ising-like spin-1/2 antiferromagnetic chain system
BaCoVO as a function of temperature down to 1.3 K and applied
transverse magnetic field up to 60 T. While across the N\'{e}el temperature of
K anomalies in magnetization and sound velocity confirm the
antiferromagnetic ordering transition, at the lowest temperature the
field-dependent measurements reveal a sharp softening of sound velocity
and a clear minimum of temperature at T,
indicating the suppression of the antiferromagnetic order. At higher fields,
the curve shows a broad minimum at T, accompanied by a
broad minimum in the sound velocity and a saturation-like magnetization. These
features signal a quantum phase transition which is further characterized by
the divergent behavior of the Gr\"{u}neisen parameter . By contrast, around the critical field, the
Gr\"{u}neisen parameter converges as temperature decreases, pointing to a
quantum critical point of the one-dimensional transverse-field Ising model.Comment: Phys. Rev. Lett., to appea
A short review of "DGP Specteroscopy"
In this paper we provide a short review of the main results developed in
hep-th/0604086. We focus on linearised vacuum perturbations about the
self-accelerating branch of solutions in the DGP model. These are shown to
contain a ghost in the spectrum for any value of the brane tension. We also
comment on hep-th/0607099, where some counter arguments have been presented.Comment: Minor typos correcte
- …