3,998 research outputs found

    Enhanced conduction band density of states in intermetallic EuTSi3_3 (T=Rh, Ir)

    Full text link
    We report on the physical properties of single crystalline EuRhSi3_3 and polycrystalline EuIrSi3_3, inferred from magnetisation, electrical transport, heat capacity and 151^{151}Eu M\"ossbauer spectroscopy. These previously known compounds crystallise in the tetragonal BaNiSn3_3-type structure. The single crystal magnetisation in EuRhSi3_3 has a strongly anisotropic behaviour at 2 K with a spin-flop field of 13 T, and we present a model of these magnetic properties which allows the exchange constants to be determined. In both compounds, specific heat shows the presence of a cascade of two close transitions near 50 K, and the 151^{151}Eu M\"ossbauer spectra demonstrate that the intermediate phase has an incommensurate amplitude modulated structure. We find anomalously large values, with respect to other members of the series, for the RKKY N\'eel temperature, for the spin-flop field (13 T), for the spin-wave gap (\simeq 20-25 K) inferred from both resistivity and specific heat data, for the spin-disorder resistivity in EuRhSi3_3 (35\simeq 35 μ\muOhm.cm) and for the saturated hyperfine field (52 T). We show that all these quantities depend on the electronic density of states at the Fermi level, implying that the latter must be strongly enhanced in these two materials. EuIrSi3_3 exhibits a giant magnetoresistance ratio, with values exceeding 600 % at 2 K in a field of 14 T.Comment: 6 pages, 8 figure

    Thermal and Transport Behavior of Single Crystalline R2CoGa8 (R = Gd, Tb, Dy, Ho, Er, Tm, Lu and Y) Compounds

    Full text link
    The anisotropy in electrical transport and thermal behavior of single crystalline R2_{2}CoGa8_{8} series of compounds is presented. These compounds crystallize in a tetragonal structure with space gropup P4/mmm. The nonmagnetic counterparts of the series namely Y2_{2}CoGa8_{8} and Lu2_{2}CoGa8_{8}show a behavior consistent with the low density of states at the fermi level. In Y2_{2}CoGa8_{8}, a possibility of charge density wave transition is observed at \approx 30 K. Gd2_{2}CoGa8_{8} and Er2_{2}CoGa8_{8} show a presence of short range correlation above the magnetic ordering temperature of the compound. In case of Gd2_{2}CoGa8_{8}, the magnetoresistance exhibits a significant anisotropy for current parallel to {[}100{]} and {[}001{]} directions. Compounds with other magnetic rare earths (R = Tb, Dy, Ho and Tm) show the normal expected magnetic behavior whereas Dy2_{2}CoGa8_{8} exhibits the possibility of charge density wave (CDW) transition at approximately same temperature as that of Y2_{2}CoGa8_{8}. The thermal property of these compounds is analysed on the basis of crystalline electric field (CEF) calculations.Comment: 10 Pages 14 Figures. Submitted to PR

    Magnetic properties and complex magnetic phase diagram in non centrosymmetric EuRhGe3_3 and EuIrGe3_3 single crystals

    Get PDF
    We report the magnetic properties of two Eu based compounds, single crystalline EuIrGe3_3 and EuRhGe3_3, inferred from magnetisation, electrical transport, heat capacity and 151^{151}Eu M\"{o}ssbauer spectroscopy. These previously known compounds crystallise in the non-centrosymmetric, tetragonal, I4mmI4mm, BaNiSn3_3-type structure. Single crystals of EuIrGe3_3 and EuRhGe3_3 were grown using high temperature solution growth method using In as flux. EuIrGe3_3 exhibits two magnetic orderings at TN1T_{\rm N1} = 12.4 K, and TN2T_{\rm N2} = 7.3 K. On the other hand EuRhGe3_3 presents a single magnetic transition with a TNT_{\rm N} = 12 K. 151^{151}Eu M\"{o}ssbauer spectra present evidence for a cascade of transitions from paramagnetic to incommensurate amplitude modulated followed by an equal moment antiferromagnetic phase at lower temperatures in EuIrGe3_3, the transitions having a substantial first order character. On the other hand the 151^{151}Eu M\"{o}ssbauer spectra at 4.2 and 9 K in EuRhGe3_3 present evidence of a single magnetic transition. In both compounds a superzone gap is observed for the current density JJ\parallel [001], which enhances with transverse magnetic field. The magnetisation measured up to 14 T shows the occurrence of field induced transitions, which are well documented in the magnetotransport data as well. The magnetic phase diagram constructed from these data is complex, revealing the presence of many phases in the HTH-T phase space

    Magnetic properties of EuPtSi3_3 single crystals

    Full text link
    Single crystals of EuPtSi3_3, which crystallize in the BaNiSn3_3-type crystal structure, have been grown by high temperature solution growth method using molten Sn as the solvent. EuPtSi3_3 which lacks the inversion symmetry and has only one Eu site in the unit cell is found to be an antiferromagnet with two successive magnetic transitions at TN1T_{\rm N1} = 17 K and TN2T_{\rm N2} = 16 K, as inferred from magnetic susceptibility, heat capacity and 151^{151}Eu M\"ossbauer measurements. The isothermal magnetization data for HH \parallel [001] reveal a metamagnetic transition at a critical field HcH_{\rm c} = 1 T. The magnetization saturates to a moment value of 6.43 μB\mu_{\rm B}/Eu above 5.9 T (9.2 T) for HH \parallel [001] ([100]), indicating that these fields are spin-flip fields for the divalent Eu moments along the two axes. The origin of this anisotropic behaviour is discussed. A magnetic (H, T) phase diagram has been constructed from the temperature dependence of isothermal magnetization data. The reduced jump in the heat capacity at TN1T_{\rm N1} indicates a transition to an incommensurate, amplitude modulated antiferromagnetic structure. The shape of the hyperfine field split M\"ossbauer spectrum at TN1T_{\rm N1} provides additional support for the proposed nature of this magnetic transition.Comment: 6 pages, 6 figures. Submitted to Phys. Rev.

    A Bayesian phylogenetic hidden Markov model for B cell receptor sequence analysis.

    Get PDF
    The human body generates a diverse set of high affinity antibodies, the soluble form of B cell receptors (BCRs), that bind to and neutralize invading pathogens. The natural development of BCRs must be understood in order to design vaccines for highly mutable pathogens such as influenza and HIV. BCR diversity is induced by naturally occurring combinatorial "V(D)J" rearrangement, mutation, and selection processes. Most current methods for BCR sequence analysis focus on separately modeling the above processes. Statistical phylogenetic methods are often used to model the mutational dynamics of BCR sequence data, but these techniques do not consider all the complexities associated with B cell diversification such as the V(D)J rearrangement process. In particular, standard phylogenetic approaches assume the DNA bases of the progenitor (or "naive") sequence arise independently and according to the same distribution, ignoring the complexities of V(D)J rearrangement. In this paper, we introduce a novel approach to Bayesian phylogenetic inference for BCR sequences that is based on a phylogenetic hidden Markov model (phylo-HMM). This technique not only integrates a naive rearrangement model with a phylogenetic model for BCR sequence evolution but also naturally accounts for uncertainty in all unobserved variables, including the phylogenetic tree, via posterior distribution sampling

    Anisotropic magnetic and superconducting properties of pure and Co-doped CaFe2_2As2_2 single crystals

    Full text link
    We report anisotropic dc magnetic susceptibility χ(T)\chi(T), electrical resistivity ρ(T)\rho(T), and heat capacity C(T)C(T) measurements on the single crystals of CaFe2x_{2-x}Cox_xAs2_2 for xx = 0 and 0.06. Large sized single crystals were grown by the high temperature solution method with Sn as the solvent. For the pure compound with xx = 0, a high temperature transition at 170 K is observed which is attributed to a combined spin density wave (SDW) ordering and a structural phase transition. On the other hand, for the Co-doped samples for xx = 0.06, the SDW transition is suppressed while superconductivity is observed at \simeq17 K. The superconducting transition has been confirmed from the magnetization and electrical resistivity studies. The 57^{57}Fe M\"ossbauer spectrum in CaFe2_2As2_2 indicates that the SDW ordering is incommensurate. In the Co-doped sample, a prominent paramagnetic line at 4.2 K is observed indicating a weakening of the SDW state.Comment: 4 pages 5 figures. Submitted to Phys. Rev.

    Quenched Averages for self-avoiding walks and polygons on deterministic fractals

    Full text link
    We study rooted self avoiding polygons and self avoiding walks on deterministic fractal lattices of finite ramification index. Different sites on such lattices are not equivalent, and the number of rooted open walks W_n(S), and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We use exact recursion equations on the fractal to determine the generating functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These are used to compute the averages ,,, , and <logWn(S)><log W_n(S)> over different positions of S. We find that the connectivity constant μ\mu, and the radius of gyration exponent ν\nu are the same for the annealed and quenched averages. However,  nlogμ+(αq2)logn ~ n log \mu + (\alpha_q -2) log n, and  nlogμ+(γq1)logn ~ n log \mu + (\gamma_q -1)log n, where the exponents αq\alpha_q and γq\gamma_q take values different from the annealed case. These are expressed as the Lyapunov exponents of random product of finite-dimensional matrices. For the 3-simplex lattice, our numerical estimation gives αq0.72837±0.00001 \alpha_q \simeq 0.72837 \pm 0.00001; and γq1.37501±0.00003\gamma_q \simeq 1.37501 \pm 0.00003, to be compared with the annealed values αa=0.73421\alpha_a = 0.73421 and γa=1.37522\gamma_a = 1.37522.Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic
    corecore