9,816 research outputs found

    Banded spatiotemporal chaos in sheared nematogenic fluids

    Get PDF
    We present the results of a numerical study of a model of the hydrodynamics of a sheared nematogenic fluid, taking into account the effects of order parameter stresses on the velocity profile, but allowing spatial variations only in the gradient direction. When parameter values are such that the stress from orientational distortions is comparable to the bare viscous stress, the system exhibits steady states with the characteristics of shear banding. In addition, nonlinearity in the coupling of extensional flow to orientation leads to the appearance of a new steady state in which the features of both spatiotemporal chaos and shear banding are present.Comment: 4 pages, 6 figures.(Some of the figures have low resolution so as to fit the requirements of arxiv.

    Dual purpose optical instrument capable of simultaneously acting as spectrometer and diffractometer

    Get PDF
    A dual purpose optical instrument is described capable of simultaneously acting as a spectrometer and diffractometer to respectively perform elemental and structural analysis of an unknown sample. The diffractometer portion of the instrument employs a modified form of Seeman-Bohlin focusing which involves providing a line source of X-rays, a sample, and a detector, all on the same focal circle. The spectrometer portion of the instrument employs a fixedly mounted X-ray energy detector mounted outside of the plane of the focal circle

    Potential inversion with subbarrier fusion data revisited

    Get PDF
    We invert experimental data for heavy-ion fusion reactions at energies well below the Coulomb barrier in order to directly determine the internucleus potential between the colliding nuclei. In contrast to the previous applications of the inversion formula, we explicitly take into account the effect of channel couplings on fusion reactions, by assuming that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. We apply this procedure to the 16^{16}O +144^{144}Sm and 16^{16}O +208^{208}Pb reactions, and find that the inverted internucleus potential are much thicker than phenomenological potentials. A relation to the steep fall-off phenomenon of fusion cross sections recently found at deep subbarrier energies is also discussed.Comment: 5 pages, 3 eps figure

    Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies

    Get PDF
    We perform a systematic study on the surface property of nucleus-nucleus potential in heavy-ion reactions using large-angle quasielastic scattering at energies well below the Coulomb barrier. At these energies, the quasielastic scattering can be well described by a single-channel potential model. Exploiting this fact, we point out that systems which involve spherical nuclei require the diffuseness parameter of around 0.60 fm in order to fit the experimental data, while systems with a deformed target between 0.8 fm and 1.1 fm.Comment: 6 pages, 6 figure

    Dilaton Brane Cosmology with Second Order String Corrections and the Cosmological Constant

    Full text link
    We consider, in five dimensions, the effective action from heterotic string which includes quantum gravity corrections up to (a')^2. The expansion, in the string frame, is in terms of |a'R|, where R is the scalar curvature and uses the third order Euler density, next to the Gauss-Bonnet term. For a positive tension brane and infinite extra dimension, the logarithmic class of solutions is less dependent from fine-tuning problems than in previous formulations. More importantly, the model suggests that in the full non-perturbative formulation, the string scale can be much lower than the effective Planck mass, without the string coupling to be vanishingly small. Also a less severe fine-tuning of the brane tension in needed.Comment: 19 pages, 5 figures LaTeX. Accepted for publication in IJMP

    Electronic Structure of the Chevrel-Phase Compounds Snx_{x}Mo6_{6}Se7.5_{7.5}: Photoemission Spectroscopy and Band-structure Calculations

    Full text link
    We have studied the electronic structure of two Chevrel-phase compounds, Mo6_6Se7.5_{7.5} and Sn1.2_{1.2}Mo6_6Se7.5_{7.5}, by combining photoemission spectroscopy and band-structure calculations. Core-level spectra taken with x-ray photoemission spectroscopy show systematic core-level shifts, which do not obey a simple rigid-band model. The inverse photoemission spectra imply the existence of an energy gap located 1\sim 1 eV above the Fermi level, which is a characteristic feature of the electronic structure of the Chevrel compounds. Quantitative comparison between the photoemission spectra and the band-structure calculations have been made. While good agreement between theory and experiment in the wide energy range was obtained as already reported in previous studies, we found that the high density of states near the Fermi level predicted theoretically due to the Van Hove singularity is considerably reduced in the experimental spectra taken with higher energy resolution than in the previous reports. Possible origins are proposed to explain this observation.Comment: 8 pages, 5 figure
    corecore