53 research outputs found

    The Phylogenetic Structure of Reptile, Avian and Uropathogenic Escherichia coli with Particular Reference to Extraintestinal Pathotypes

    Get PDF
    The impact of the Gram-negative bacterium Escherichia coli (E. coli) on the microbiomic and pathogenic phenomena occurring in humans and other warm-blooded animals is relatively well-recognized. At the same time, there are scant data concerning the role of E. coli strains in the health and disease of cold-blooded animals. It is presently known that reptiles are common asymptomatic carriers of another human pathogen, Salmonella, which, when transferred to humans, may cause a disease referred to as reptile-associated salmonellosis (RAS). We therefore hypothesized that reptiles may also be carriers of specific E. coli strains (reptilian Escherichia coli, RepEC) which may differ in their genetic composition from the human uropathogenic strain (UPEC) and avian pathogenic E. coli (APEC). Therefore, we isolated RepECs (n = 24) from reptile feces and compared isolated strains’ pathogenic potentials and phylogenic relations with the aforementioned UPEC (n = 24) and APEC (n = 24) strains. To this end, we conducted an array of molecular analyses, including determination of the phylogenetic groups of E. coli, virulence genotyping, Pulsed-Field Gel Electrophoresis-Restriction Analysis (RA-PFGE) and genetic population structure analysis using Multi-Locus Sequence Typing (MLST). The majority of the tested RepEC strains belonged to nonpathogenic phylogroups, with an important exception of one strain, which belonged to the pathogenic group B2, typical of extraintestinal pathogenic E. coli. This strain was part of the globally disseminated ST131 lineage. Unlike RepEC strains and in line with previous studies, a high percentage of UPEC strains belonged to the phylogroup B2, and the percentage distribution of phylogroups among the tested APEC strains was relatively homogenous, with most coming from the following nonpathogenic groups: C, A and B1. The RA-PFGE displayed a high genetic diversity among all the tested E. coli groups. In the case of RepEC strains, the frequency of occurrence of virulence genes (VGs) was lower than in the UPEC and APEC strains. The presented study is one of the first attempting to compare the phylogenetic structures of E. coli populations isolated from three groups of vertebrates: reptiles, birds and mammals (humans).</jats:p

    Ability of clinical P. Aeruginosa strains to form biofilm on the SLM-produced AZ31 specimens

    No full text
    W pracy przedstawiono wyniki badań nad oceną zdolności tworzenia biofilmu szczepu bakterii P. Aeruginosa, na powierzchni próbek wyprodukowanych z lekkiego stopu magnezu - AZ31 w technologii SLM. Ilość kolonii bakteryjnych wyhodowanych w biofilnie, jest nawet 700x wyższa, w odniesieniu do skafoldów ze stopu Ti-6Al-7Nb, wyprodukowanych w tej samej technologii.In this work, results of research on ability to form biofilm by P. Aeruginosa strains on AZ31 specimens manufactured in SLM technology are reported. The number of cells forming biofilm on specimens is even 700 times higher than on scaffolds manufactured from Ti-6Al-7Nb alloy by SLM technique

    The influence of different composite mixtures (PLA/HA) manufactured with additive laser technology on the ability of S. aureus and P. aeruginosa to form biofilms

    No full text
    Staphylococcus aureus (Gram-positive coccus) and Pseudomonas aeruginosa (Gram-negative bacterium) are the leading etiologic agents of biofilm-related, life-threatening infections in patients after orthopaedic implantations. The aim of the present paper is to estimate the ability of these two bacterial strains to form a biofilm on bioresorbable composites manufactured from polylactide (PLA) and hydroxyapatite (HA) with the use of Selective Laser Sintering (SLS) method. Methods: Microbiological tests were conducted on two variants of a solid specimen made with additive laser technology. Samples with different content of hydroxyapatite were made, with appropriate manufacturing parameters to ensure stability of both composite ingredients. The geometry of samples was obtained by technical computed tomography. Microbiological tests determined the number of bacterial cells after incubation. Results: The results indicate significantly decreased ability of S. aureus and P. aeruginosa to form biofilms on the surface of materials with higher content of hydroxyapatite ceramics. Conclusions: The data may be useful for future applications of SLS technology in the production of bioresorbable PLA/HA medical implant

    Mikrostruktura, pomiary twardości oraz cytotoksyczność medycznych stopów tytanu wyprodukowanych przy użyciu wytwarzania przyrostowego

    No full text
    Additive Manufacturing (AM) is a rapidly developing technology that has many applications in the industry nowadays, as well as in medicine. That group of technologies have a significant advantage over traditional manufacturing processes as they enable fabrication of parts of almost any conceivable geometric shape and complex internal architecture. Electron Beam Melting (EBM) and Selective Laser Melting (SLM) are examples of Additive Manufacturing. Both use metallic powder as their building material, however energy sources used during the manufacturing process are different. First technology uses a concentrated electron beam and the second a high-energy laser. In this paper, cubic samples manufactured using EBM and SLM technologies from medical titanium alloys (Ti6Al4V and Ti6Al7Nb) were tested. Microstructure, hardness of samples and their cytotoxicity was determined. Due to very high gradients of temperature, during the AM processes, obtained microstructures are similar to multistage heat treatment of a conventionally manufactured titanium alloys. Hardness measurements show a great repeatability of results, with similar values regardless of building direction. They maintain at the level of 372 - 392 HV, which also suggests that heat treatment occurs during the process. For medical application, it is necessary that the used materials were characterized by low cytotoxicity. Due to their contact with human body, the possibility of harming cells must be eliminated. For this purpose, a biological analysis was performed under controlled conditions (37 ° C / 5% CO2) at 100% humidity, which confirmed the high purity of the materials.Wytwarzanie przyrostowe to szybko rozwijające się technologie mająca wiele zastosowań, zarówno w przemyśle, jak i medycynie. Charakteryzują się one wyraźną przewagą nad tradycyjnymi sposobami produkcji, gdyż pozwalają na wytwarzanie każdego geometrycznego kształtu, a także skomplikowaną architekturę wewnętrzną. Przetapianie Wiązką Elektronów (EBM, ang. Electron Beam Melting) oraz Selektywne Przetapianie Laserowe (SLM, ang. Selective Laser Sintering) są przykładami wytwarzania przyrostowego. Oba używają proszku metalowego jako materiału, jednakże źródła energii wykorzystywane w czasie produkcji są różne. Pierwszy używa skoncentrowanej wiązki elektronów, a drugi wysokoenergetycznego lasera. Podczas badania wyznaczono mikrostrukturę, twardość i cytotoksyczność próbek wykonanych metodami EBM i SLM z medycznych stopów tytanu (Ti6Al4V i Ti6Al7Nb).W związku z wysokimi gradientami temperaturowymi, mikrostruktury otrzymane podczas wytwarzania przyrostowego przypominają te, które daje konwencjonalna, wieloetapowa obróbka cieplna. Pomiary twardości wykazały powtarzalność wyników, z podobnymi wartościami niezależnie od kierunku budowy próbki. Znajdują się one w zakresie 372 - 392 HV, co sugeruje zachodzenie obróbki cieplnej podczas samego procesu. Użytkowanie materiału w medycynie wymaga niskiej cytotoksyczności, ze względu na kontakt z ludzkim ciałem. Próbki poddano biologicznej analizie w kontrolowanych warunkach (37 ° C / 5% CO2) w wilgotności równej 100%, co potwierdziło wysoką czystość materiałów

    Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field

    No full text
    The aim of the present study was to evaluate the impact of a rotating magnetic field (RMF) on cellular and biochemical properties of Gluconacetobacter xylinus during the process of cellulose synthesis by these bacteria. The application of the RMF during bacterial cellulose (BC) production intensified the biochemical processes in G. xylinus as compared to the RMF-unexposed cultures. Moreover, the RMF had a positive impact on the growth of cellulose-producing bacteria. Furthermore, the application of RMF did not increase the number of mutants unable to produce cellulose. In terms of BC production effi cacy, the most favorable properties were found in the setting where RMF generator was switched off for the fi rst 72 h of cultivation and switched on for the further 72 h. The results obtained can be used in subsequent studies concerning the optimization of BC production using different types of magnetic fields including RMF, especially

    The ability of S.aureus to form biofilm on the Ti-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications

    No full text
    The Gram-positive coccus, Staphylococcus aureus, is the leading etiologic agent of limb and life-threatening biofilm-related infections in the patients following the orthopaedic implantations. The aim of the present paper is to estimate the ability of S. aureus to form biofilm on titanium alloy (Ti-6Al-7Nb) scaffolds produced by Selective Laser Melting (SLM) and subjected to the different types of surface modifications, including ultrasonic cleaning and chemical polishing. The results obtained indicate significantly the decreased ability of S.aureus to form biofilm on the surface of scaffolds subjected to the chemical polishing in comparison to the scaffolds cleaned ultrasonically. The data provided can be useful for future applications of the SLM technology in production of Ti-6Al-7Nb medical implants

    The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm

    No full text
    In our previous work we reported the impact of hydrofluoric and nitric acid used for chemical polishing of Ti-6Al-7Nb scaffolds on decrease of the number of Staphylococcus aureus biofilm forming cells. Herein, we tested impact of the aforementioned substances on biofilm of Gram-negative microorganism, Pseudomonas aeruginosa, dangerous pathogen responsible for plethora of implant-related infections. The Ti-6Al-7Nb scaffolds were manufactured using Selective Laser Melting method. Scaffolds were subjected to chemical polishing using a mixture of nitric acid and fluoride or left intact (control group). Pseudomonal biofilm was allowed to form on scaffolds for 24 hours and was removed by mechanical vortex shaking. The number of pseudomonal cells was estimated by means of quantitative culture and Scanning Electron Microscopy. The presence of nitric acid and fluoride on scaffold surfaces was assessed by means of IR and rentgen spetorscopy. Quantitative data were analysed using the Mann–Whitney test (P ≤ 0.05). Our results indicate that application of chemical polishing correlates with significant drop of biofilm-forming pseudomonal cells on the manufactured Ti-6Al-7Nb scaffolds ( p = 0.0133, Mann–Whitney test) compared to the number of biofilm-forming cells on non-polished scaffolds. As X-ray photoelectron spectroscopy revealed the presence of fluoride and nitrogen on the surface of scaffold, we speculate that drop of biofilm forming cells may be caused by biofilm-supressing activity of these two elements
    corecore